scholarly journals Photonic powering of sensors with bidirectional communication along a single fiber

2020 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Jovan Shikoski ◽  
Rumen Arnaudov ◽  
Tinko Eftimov

In this paper we propose and study simultaneous transmission of photonic power and bidirectional communication to and from sensors via 840/1310 nm WDMs. The photovoltaic converter is used both for power conversion and data transfer from the high power laser at 808nm up to 1Mb/s while the 1310nm link can be up to 155 Mb/s.Full Text: PDF References:J.C.V.da Silva, E.L.A.S.de Souza, V.Garcia, J.B.Rosolem, C.Floridia, M.A.B.Sanches, "Design of a Multimode Fiber Optic Cable to Transmit Optical Energy for Long Reach in PoF Systems", Proceedings of the 63rd IWCS Conference, International Wire & Cable Symposium, Shrewsbury, PA, USA, 2014, pp.832-839. [CrossRef]J.B. Rosolem, E.K.Tomiyama, D.C.Dini, F.R.Bassan, R.S.Penze, A.A.Leonardi, C. Floridia, J.P.Fracarolli, R.M.Teixeira, "A fiber optic powered sensor designed for partial discharges monitoring on high voltage bushings". Proc. of SBMO/IEEE MTT‐S International Microwave and Optoelectronics Conference (IMOC); 3-6 Nov. 2015; Porto de Galinhas, Brazil, pp. 1-5. [CrossRef]T.C. Banwell, R.C.Estes, L.A.Reith, P.W.Shumate, E.M.Vogel, "Powering the fiber loop optically - a cost analysis", IEEE J. of Lightwave Techn., Vol. 11, No. 3, pp. 481-494, 1993. [CrossRef]M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, "Power Transmission by Optical Fibers for Component Inherent Communication", Systemics, Cybernetics And Informatics, Vol.8, No.1, pp. 55-60, (2010) [DirectLink]C. Gao, J. Wang, L. Yin, J. Yang, J. Jiang, H. Wan, Optically Powered Active Sensing System for Internet Of Things, Proc. SPIE 9270, Optoelectronic Devices and Integration V, 927016 (24 October 2014) [CrossRef]J. Yan, J. Wang, Y. Lu, J. Jiang, H. Wan, Novel Wireless Sensor System Based on Power-over-Fiber Technique, 14th Int. Conf. on Optical Comm. and Networks (ICOCN) 3-5 July 2015, Nanjing, China, 15382393 [CrossRef]Böttger, G.; Dreschmann, M.; Klamouris, C.; Hü bner, M.; Röger, M.; Bett, A. W.; Kueng, T.; Becker, J.; Freu de, W.; Leuthold, J.: An Otically Powered Video Camera Link. IEEE Photonics Technology Letters, Vol. 20, No. 1, pages 39-41, 2008. [CrossRef]M. Matsuura and J. Sato, Bidirectional Radio-Over-Fiber Systems Using Double-Clad Fibers for Optically Powered Remote Antenna Units, IEEE Photonics J., Vol. 7, No. 1, 2015, 7900609 [CrossRef]J. Wang, Q. Li, J. Yan, Y. Ding, Y. Lu, Y. Zhang, H. Wan, Power-Over-Fiber Technique based Sensing System for Internet оf Things, 15th International Conference on Optical Communications and Networks (ICOCN), Hangzhou, China, Sep. 24-27, 2016. [CrossRef]S. Kartalopoulos, Optical Bit Error Rate: An Estimation Methodology (2004) Willey- IEEE Press. [CrossRef]J. Shikoski, R. Arnaudov, and T. Eftimov, A study of the frequency characteristics of a photovoltaic convertor РРС-4Е, Photonics Letters of Poland, Vol. 10(3), (2018), pp. 70-72 [CrossRef]J. B. Rosolem, Optical Fiber and Wireless Communications, Ed. by R. Róka, Ch. 13, Power‐Over‐Fiber Applications for Telecommunications and for Electric Utilities, Intech Open Ltd, London, 2017, pp.255-278. [CrossRef]

2020 ◽  
Vol 54 (6) ◽  
pp. 77-83
Author(s):  
David G. Aubrey ◽  
Jennifer Wehof ◽  
Stephen O'Malley ◽  
Rajai Aghabi

AbstractFloating LiDAR systems (FLS) and other moored environmental monitoring systems are used extensively for wind and environmental assessments in offshore wind projects. In addition, wave energy converters (WECs) are being evaluated for more extensive use in coastal and deeper waters, most of which also require anchoring to the seabed. Since these systems must be moored, heavy anchors and typically heavy chain are used to secure the mooring and measurement/WEC buoy to the seabed. Disadvantages of present mooring technology include 1) damage to the seabed and benthic communities in vicinity of the mooring, as chain sweeps over the sea bottom; 2) an unnecessarily large watch circle at the water's surface; 3) slightly increased likelihood of marine mammal entanglement; 4) mooring damage from nearby fishing activity; and 5) likelihood of mooring failure due to self-entanglement within the mooring itself. This study presents an alternative mooring using mechanically compliant, elastomeric hoses to connect the buoyed system to the bottom anchor. Modeling the two mooring types with a typical buoy used in wind resource assessments shows a significant decrease in anchor drag area and surface watch circle with the use of the elastomeric hose versus the traditional chain and polyethylene line mooring. The hose also is equipped with copper conductors and/or fiber-optic conductors, providing power and data transmission between the bottom and the surface. For WEC solutions, the elastomeric hose provides similar benefits as for FLS and environmental monitoring systems, with the added advantage of being able to transmit power to the seafloor for distribution. For one WEC application, we have developed an elastomeric solution containing not only larger copper conductors to enable power transmission but also fiber-optic conductors to permit data transfer from a garage mounted on the bottom (servicing an autonomous underwater vehicle [AUV] or unmanned underwater vehicle [UUV], for instance) to the surface buoy for onward transmission to shore.


2012 ◽  
Vol 44 (1) ◽  
pp. 269-280 ◽  
Author(s):  
Chang-Yong Yun ◽  
Dipesh Dhital ◽  
Jung-Ryul Lee ◽  
Gyuhae Park ◽  
Il-Bum Kwon

2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 107
Author(s):  
Nakash Nazeer ◽  
Xuerui Wang ◽  
Roger M. Groves

This paper presents a study on trailing edge deflection estimation for the SmartX camber morphing wing demonstrator. This demonstrator integrates the technologies of smart sensing, smart actuation and smart controls using a six module distributed morphing concept. The morphing sequence is brought about by two actuators present at both ends of each of the morphing modules. The deflection estimation is carried out by interrogating optical fibers that are bonded on to the wing’s inner surface. A novel application is demonstrated using this method that utilizes the least amount of sensors for load monitoring purposes. The fiber optic sensor data is used to measure the deflections of the modules in the wind tunnel using a multi-modal fiber optic sensing approach and is compared to the deflections estimated by the actuators. Each module is probed by single-mode optical fibers that contain just four grating sensors and consider both bending and torsional deformations. The fiber optic method in this work combines the principles of hybrid interferometry and FBG spectral sensing. The analysis involves an initial calibration procedure outside the wind tunnel followed by experimental testing in the wind tunnel. This method is shown to experimentally achieve an accuracy of 2.8 mm deflection with an error of 9%. The error sources, including actuator dynamics, random errors, and nonlinear mechanical backlash, are identified and discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


2007 ◽  
Vol 1054 ◽  
Author(s):  
Ruth Houbertz ◽  
Herbert Wolter ◽  
Volker Schmidt ◽  
Ladislav Kuna ◽  
Valentin Satzinger ◽  
...  

ABSTRACTThe integration of optical interconnects in printed circuit boards (PCB) is a rapidly growing field worldwide due to a continuously increasing need for high-speed data transfer. There are any concepts discussed, among which are the integration of optical fibers or the generation of waveguides by UV lithography, embossing, or direct laser writing. The devices presented so far require many different materials and process steps, but particularly also highly-sophisticated assembly steps in order to couple the optoelectronic elements to the generated waveguides. In order to overcome these restrictions, an innovative approach is presented which allows the embedding of optoelectronic components and the generation of optical waveguides in only one optical material. This material is an inorganic-organic hybrid polymer, in which the waveguides are processed by two-photon absorption (TPA) processes, initiated by ultra-short laser pulses. In particular, due to this integration and the possibility ofin situpositioning the optical waveguides with respect to the optoelectronic components by the TPA process, no complex packaging or assembly is necessary. Thus, the number of necessary processing steps is significantly reduced, which also contributes to the saving of resources such as energy or solvents. The material properties and the underlying processes will be discussed with respect to optical data transfer in PCBs.


Sign in / Sign up

Export Citation Format

Share Document