scholarly journals A rare case of equine Haemotropic Mycoplasma infection in Nigeria

2021 ◽  
Vol 41 (3) ◽  
pp. 274-286
Author(s):  
A.N Happi ◽  
P.E Oluniyi

Equine haemotropic mycoplasmosis (EHM) is a condition rarely reported worldwide. A horse presented with unspecific clinical findings and non-response to treatment to the common and endemic haemoparasitic and bacterial infections, warranted a thorough molecular investigation of suspected haemoparasitic infection given the fluctuating parasitaemia and the low sensitivity and specificity of Light Microscopy (LM) detection of haemoparasitic infections. Blood collected from an adult horse, domiciled at the University of Ibadan Veterinary Teaching Hospital, Ibadan, Nigeria was screened by LM and PCR techniques for haemo-parasites. The 16S rRNA gene of pan-Hemoplasma spp was targeted amplified and sequenced using Sanger automatic sequencing techniques. This case shows the very first molecular evidence of EHM in Africa and Nigeria, and the third case in the World. Microscopic examination of the horse’s blood smear presented with signs of lethargy, inactivity, anorexia and moderate emaciation, showed numerous coccoid-shaped epierythrocytic parasites. Subsequent 16S rRNA sequence data and phylogenetic analyses confirmed the presence of a haemotropic mycoplasma (‘Candidatus M. haemocervae’–like) in the horse. The hemoplasma sequence obtained falls in the same clade with some Candidatus Mycoplasma haemocervae sequences with which it shared more than 98.7% homology. This finding suggests that horses in this geographical region may also be suffering from EHM and calls for the need of epidemiological surveillance of equine hemoplasmosis with emphasis on their clinical, economic, performance and zoonotic implications in the sub-region. Keywords: Nigeria, Horse, Haemotropic mycoplasma, ‘Candidatus M. haemocervae’–like

2004 ◽  
Vol 54 (4) ◽  
pp. 1301-1310 ◽  
Author(s):  
R. J. Akhurst ◽  
N. E. Boemare ◽  
P. H. Janssen ◽  
M. M. Peel ◽  
D. A. Alfredson ◽  
...  

The relationship of Photorhabdus isolates that were cultured from human clinical specimens in Australia to Photorhabdus asymbiotica isolates from human clinical specimens in the USA and to species of the genus Photorhabdus that are associated symbiotically with entomopathogenic nematodes was evaluated. A polyphasic approach that involved DNA–DNA hybridization, phylogenetic analyses of 16S rRNA and gyrB gene sequences and phenotypic characterization was adopted. These investigations showed that gyrB gene sequence data correlated well with DNA–DNA hybridization and phenotypic data, but that 16S rRNA gene sequence data were not suitable for defining species within the genus Photorhabdus. Australian clinical isolates proved to be related most closely to clinical isolates from the USA, but the two groups were distinct. A novel subspecies, Photorhabdus asymbiotica subsp. australis subsp. nov. (type strain, 9802892T=CIP 108025T=ACM 5210T), is proposed, with the concomitant creation of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. Analysis of gyrB sequences, coupled with previously published data on DNA–DNA hybridization and PCR-RFLP analysis of the 16S rRNA gene, indicated that there are more than the three subspecies of Photorhabdus luminescens that have been described and confirmed the validity of the previously proposed subdivision of Photorhabdus temperata. Although a non-luminescent, symbiotic isolate clustered consistently with P. asymbiotica in gyrB phylogenetic analyses, DNA–DNA hybridization indicated that this isolate does not belong to the species P. asymbiotica and that there is a clear distinction between symbiotic and clinical species of Photorhabdus.


2007 ◽  
Vol 57 (5) ◽  
pp. 954-958 ◽  
Author(s):  
Soon-Wo Kwon ◽  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Youn-Kyung Baek ◽  
Seung-Joo Go

A Gram-negative, aerobic bacterium, designated strain HO3-R19T, which was isolated from seashore sand in Pohang city, Korea, was characterized on the basis of a polyphasic taxonomic approach. Phylogenetic analyses of 16S rRNA gene sequences revealed that strain HO3-R19T represents a new lineage within the Gammaproteobacteria; sequence similarities between strain HO3-R19T and members of other related genera were less than 93.5 %. Strain HO3-R19T was also distinguished from related genera based on differences in several phenotypic characteristics. Cells were straight or slightly curved rods and formed white colonies on R2A agar. The major isoprenoid quinone was ubiquinone 8 (Q-8), and predominant cellular fatty acids were iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c. The DNA G+C content of strain HO3-R19T was 65.0 mol%. Based on physiological, biochemical and chemotaxonomic traits together with results of comparative 16S rRNA sequence analysis, strain HO3-R19T is considered to represent a novel species in a new genus, for which the name Arenimonas donghaensis gen. nov., sp. nov. is proposed. The type strain of Arenimonas donghaensis is HO3-R19T (=KACC 11381T=DSM 18148T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2768-2774 ◽  
Author(s):  
Cristina Sánchez-Porro ◽  
Bhavleen Kaur ◽  
Henrietta Mann ◽  
Antonio Ventosa

A Gram-negative, heterotrophic, aerobic, non-endospore-forming, peritrichously flagellated and motile bacterial strain, designated BH1T, was isolated from samples of rusticles, which are formed in part by a consortium of micro-organisms, collected from the RMS Titanic wreck site. The strain grew optimally at 30–37 °C, pH 7.0–7.5 and in the presence of 2–8 % (w/v) NaCl. We carried out a polyphasic taxonomic study in order to characterize the strain in detail. Phylogenetic analyses based on 16S rRNA gene sequence comparison indicated that strain BH1T clustered within the branch consisting of species of Halomonas. The most closely related type strains were Halomonas neptunia (98.6 % 16S rRNA sequence similarity), Halomonas variabilis (98.4 %), Halomonas boliviensis (98.3 %) and Halomonas sulfidaeris (97.5 %). Other closely related species were Halomonas alkaliphila (96.5 % sequence similarity), Halomonas hydrothermalis (96.3 %), Halomonas gomseomensis (96.3 %), Halomonas venusta (96.3 %) and Halomonas meridiana (96.2 %). The major fatty acids of strain BH1T were C18 : 1 ω7c (36.3 %), C16 : 0 (18.4 %) and C19 : 0 cyclo ω8c (17.9 %). The DNA G+C content was 60.0 mol% (T m). Ubiquinone 9 (Q-9) was the major lipoquinone. The phenotypic features, fatty acid profile and DNA G+C content further supported the placement of strain BH1T in the genus Halomonas. DNA–DNA hybridization values between strain BH1T and H. neptunia CECT 5815T, H. variabilis DSM 3051T, H. boliviensis DSM 15516T and H. sulfidaeris CECT 5817T were 19, 17, 30 and 29 %, respectively, supporting the differential taxonomic status of BH1T. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain BH1T is considered to represent a novel species, for which the name Halomonas titanicae sp. nov. is proposed. The type strain is BH1T (=ATCC BAA-1257T =CECT 7585T =JCM 16411T =LMG 25388T).


2013 ◽  
Vol 80 (4) ◽  
pp. 1403-1410 ◽  
Author(s):  
Clare A. Anstead ◽  
Neil B. Chilton

ABSTRACTThe genomic DNA from four species of ixodid ticks in western Canada was tested for the presence ofRickettsiellaby PCR analyses targeting the 16S rRNA gene. Eighty-eight percent of theIxodes angustus(n= 270), 43% of theI. sculptus(n= 61), and 4% of theI. kingi(n= 93) individuals examined were PCR positive forRickettsiella, whereas there was no evidence for the presence ofRickettsiellainDermacentor andersoni(n= 45). Three different single-strand conformation polymorphism profiles of the 16S rRNA gene were detected among amplicons derived fromRickettsiella-positive ticks, each corresponding to a different sequence type. Furthermore, each sequence type was associated with a different tick species. Phylogenetic analyses of sequence data of the 16S rRNA gene and three other genes (rpsA,gidA, andsucB) revealed that all three sequence types were placed in a clade that contained species and pathotypes of the genusRickettsiella. The bacterium inI. kingirepresented the sister taxon to theRickettsiellainI. sculptus, and both formed a clade withRickettsiellagryllifrom crickets (Gryllus bimaculatus) and “R. ixodidis” fromI. woodi. In contrast, theRickettsiellainI. angustuswas not a member of this clade but was placed external to the clade comprising the pathotypes ofR. popilliae. The results indicate the existence of at least two new species ofRickettsiella: one inI. angustusand another inI. kingiandI. sculptus. However, theRickettsiellastrains inI. kingiandI. sculptusmay also represent different species because each had unique sequences for all four genes.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 56-64 ◽  
Author(s):  
Ivana Orthová ◽  
Peter Kämpfer ◽  
Stefanie P. Glaeser ◽  
René Kaden ◽  
Hans-Jürgen Busse

A Gram-negative, rod-shaped and motile bacterial isolate, designated strain NS9T, isolated from air of the Sainsbury Centre for Visual Arts in Norwich, UK, was subjected to a polyphasic taxonomic study including phylogenetic analyses based on partial 16S rRNA, gyrB and lepA gene sequences and phenotypic characterization. The 16S rRNA gene sequence of NS9T identified Massilia haematophila CCUG 38318T, M. niastensis 5516S-1T (both 97.7 % similarity), M. aerilata 5516S-11T (97.4 %) and M. tieshanensis TS3T (97.4 %) as the next closest relatives. In partial gyrB and lepA sequences, NS9T shared the highest similarities with M. haematophila CCUG 38318T (94.5 %) and M. aerilata 5516-11T (94.3 %), respectively. These sequence data demonstrate the affiliation of NS9T to the genus Massilia . The detection of the predominant ubiquinone Q-8, a polar lipid profile consisting of the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and a polyamine pattern containing 2-hydroxyputrescine and putrescine were in agreement with the assignment of strain NS9T to the genus Massilia . Major fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0, C18 : 1ω7c and C10 : 0 3-OH. Dissimilarities in partial lepA and gyrB gene sequences as well as results from DNA–DNA hybridizations demonstrate that strain NS9T is a representative of an as-yet undescribed species of the genus Massilia that is also distinguished from its close relatives based on physiological and biochemical traits. Hence, we describe a novel species, for which we propose the name Massilia norwichensis sp. nov., with the type strain NS9T ( = CCUG 65457T = LMG 28164T).


2000 ◽  
Vol 66 (10) ◽  
pp. 4222-4229 ◽  
Author(s):  
Scott R. Miller ◽  
Richard W. Castenholz

ABSTRACT The extension of ecological tolerance limits may be an important mechanism by which microorganisms adapt to novel environments, but it may come at the evolutionary cost of reduced performance under ancestral conditions. We combined a comparative physiological approach with phylogenetic analyses to study the evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Among the 20 laboratory clones of Synechococcus isolated from collections made along an Oregon hot spring thermal gradient, four different 16S rRNA gene sequences were identified. Phylogenies constructed by using the sequence data indicated that the clones were polyphyletic but that three of the four sequence groups formed a clade. Differences in thermotolerance were observed for clones with different 16S rRNA gene sequences, and comparison of these physiological differences within a phylogenetic framework provided evidence that more thermotolerant lineages of Synechococcus evolved from less thermotolerant ancestors. The extension of the thermal limit in these bacteria was correlated with a reduction in the breadth of the temperature range for growth, which provides evidence that enhanced thermotolerance has come at the evolutionary cost of increased thermal specialization. This study illustrates the utility of using phylogenetic comparative methods to investigate how evolutionary processes have shaped historical patterns of ecological diversification in microorganisms.


Author(s):  
Pirjo Rajaniemi ◽  
Pavel Hrouzek ◽  
Klára Kaštovská ◽  
Raphaël Willame ◽  
Anne Rantala ◽  
...  

The heterocytous cyanobacteria form a monophyletic group according to 16S rRNA gene sequence data. Within this group, phylogenetic and morphological studies have shown that genera such as Anabaena and Aphanizomenon are intermixed. Moreover, the phylogeny of the genus Trichormus, which was recently separated from Anabaena, has not been investigated. The aim was to study the taxonomy of the genera Anabaena, Aphanizomenon, Nostoc and Trichormus belonging to the family Nostocaceae (subsection IV.I) by morphological and phylogenetic analyses of 16S rRNA gene, rpoB and rbcLX sequences. New strains were isolated to avoid identification problems caused by morphological changes of strains during cultivation. Morphological and phylogenetic data showed that benthic and planktic Anabaena strains were intermixed. In addition, the present study confirmed that Anabaena and Aphanizomenon strains were not monophyletic, as previously demonstrated. The evolutionary distances between the strains indicated that the planktic Anabaena and Aphanizomenon strains as well as five benthic Anabaena strains in cluster 1 could be assigned to a single genus. On the basis of the 16S rRNA, rpoB and rbcLX gene sequences, the Anabaena/Aphanizomenon strains (cluster 1) were divided into nine supported subclusters which could also be separated morphologically, and which therefore might represent different species. Trichormus strains were morphologically and phylogenetically heterogeneous and did not form a monophyletic cluster. These Trichormus strains, which were representatives of three distinct species, might actually belong to three genera according to the evolutionary distances. Nostoc strains were also heterogeneous and seemed to form a monophyletic cluster, which may contain more than one genus. It was found that certain morphological features were stable and could be used to separate different phylogenetic clusters. For example, the width and the length of akinetes were useful features for classification of the Anabaena/Aphanizomenon strains in cluster 1. This morphological and phylogenetic study with fresh isolates showed that the current classification of these anabaenoid genera needs to be revised.


2004 ◽  
Vol 70 (4) ◽  
pp. 2079-2088 ◽  
Author(s):  
Mark Dopson ◽  
Craig Baker-Austin ◽  
Andrew Hind ◽  
John P. Bowman ◽  
Philip L. Bond

ABSTRACT Three recently isolated extremely acidophilic archaeal strains have been shown to be phylogenetically similar to Ferroplasma acidiphilum YT by 16S rRNA gene sequencing. All four Ferroplasma isolates were capable of growing chemoorganotrophically on yeast extract or a range of sugars and chemomixotrophically on ferrous iron and yeast extract or sugars, and isolate “Ferroplasma acidarmanus” Fer1T required much higher levels of organic carbon. All four isolates were facultative anaerobes, coupling chemoorganotrophic growth on yeast extract to the reduction of ferric iron. The temperature optima for the four isolates were between 35 and 42°C and the pH optima were 1.0 to 1.7, and “F. acidarmanus” Fer1T was capable of growing at pH 0. The optimum yeast extract concentration for “F. acidarmanus” Fer1T was higher than that for the other three isolates. Phenotypic results suggested that isolate “F. acidarmanus” Fer1T is of a different species than the other three strains, and 16S rRNA sequence data, DNA-DNA similarity values, and two-dimensional polyacrylamide gel electrophoresis protein profiles clearly showed that strains DR1, MT17, and YT group as a single species. “F. acidarmanus” Fer1T groups separately, and we propose the new species “F. acidarmanus” Fer1T sp. nov.


1999 ◽  
Vol 65 (1) ◽  
pp. 270-277 ◽  
Author(s):  
Azeem Ahmad ◽  
James P. Barry ◽  
Douglas C. Nelson

ABSTRACT Environmentally dominant members of the genus Beggiatoaand Thioploca spp. are united by unique morphological and physiological adaptations (S. C. McHatton, J. P. Barry, H. W. Jannasch, and D. C. Nelson, Appl. Environ. Microbiol. 62:954–958, 1996). These adaptations include the presence of very wide filaments (width, 12 to 160 μm), the presence of a central vacuole comprising roughly 80% of the cellular biovolume, and the capacity to internally concentrate nitrate at levels ranging from 150 to 500 mM. Until recently, the genera Beggiatoa andThioploca were recognized and differentiated on the basis of morphology alone; they were distinguished by the fact that numerousThioploca filaments are contained within a common polysaccharide sheath, while Beggiatoa filaments occur singly. Vacuolate Beggiatoa or Thioploca spp. can dominate a variety of marine sediments, seeps, and vents, and it has been proposed (H. Fossing, V. A. Gallardo, B. B. Jorgensen, M. Huttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa, Nature [London] 374:713–715, 1995) that members of the genusThioploca are responsible for a significant portion of total marine denitrification. In order to investigate the phylogeny of an environmentally dominant Beggiatoa sp., we analyzed complete 16S rRNA gene sequence data obtained from a natural population found in Monterey Canyon cold seeps. Restriction fragment length polymorphism analysis of a clone library revealed a dominant clone, which gave rise to a putative Monterey Beggiatoa 16S rRNA sequence. Fluorescent in situ hybridization with a sequence-specific probe confirmed that this sequence originated from wideBeggiatoa filaments (width, 65 to 85 μm). A phylogenetic tree based on evolutionary distances indicated that the MontereyBeggiatoa sp. falls in the gamma subdivision of the classProteobacteria and is most closely related to the genusThioploca. This vacuolate Beggiatoa—Thioplocacluster and a more distantly related freshwater Beggiatoaspecies cluster form a distinct phylogenetic group.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2666-2670 ◽  
Author(s):  
Xueqian Lei ◽  
Yi Li ◽  
Guanghua Wang ◽  
Yao Chen ◽  
Qiliang Lai ◽  
...  

A Gram-staining-negative, orange-pigmented, non-motile, aerobic bacterial strain, designated GYP20T, was isolated from a culture of the alga Picochlorum sp., a promising feedstock for biodiesel production, which was isolated from the India Ocean. Growth was observed at temperatures from 20 to 37 °C, salinities from 0 to 3  % and pH from 5 to 9.Mg 2+ and Ca2+ ions were required for growth. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the strain was a member of the genus Phaeodactylibacter, which belongs to the family Saprospiraceae. Strain GYP20T was most closely related to Phaeodactylibacter xiamenensis KD52T (95.5  % sequence similarity). The major fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3. The predominant respiratory quinone was menaquinone-7 (MK-7). The polar lipids of strain GYP20T were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, four unidentified glycolipids, two unidentified phospholipids and three unidentified aminolipids. According to its morphology, physiology, fatty acid composition and 16S rRNA sequence data, the novel strain most appropriately belongs to the genus Phaeodactylibacter, but can readily be distinguished from Phaeodactylibacter xiamenensis GYP20T. The name Phaeodactylibacter luteus sp. nov. is proposed with the type strain GYP20T ( = MCCC 1F01222T = KCTC 42180T).


Sign in / Sign up

Export Citation Format

Share Document