scholarly journals Sustainable crossbreeding systems of beef cattle in the era of climate change

2015 ◽  
Vol 44 (5) ◽  
pp. 8-11
Author(s):  
MC Mokolobate ◽  
A Theunissen ◽  
MM Scholtz ◽  
FWC Neser

Beef cattle are unique, because they not only suffer from climate change, but they also contribute to climate change through the emission of greenhouse gases (GHG). Mitigation and adaptation strategies are therefore needed. An effective way to reduce the carbon footprint from beef cattle would be to reduce the numbers and increase the production per animal, thereby improving their productivity. Sustainable crossbreeding systems can be an effective way to reduce GHG, as it has been shown to increase production. There are a wide range of different cattle breeds in South Africa which can be optimally utilized for effective and sustainable crossbreeding. This paper reports on the effects of crossbreeding on the kilogram calf weaned per Large Stock Unit (kgC/LSU) for 29 genotypes. These genotypes were formed by crossing Afrikaner (A) cows with Brahman (B), Charolais (C), Hereford (H) and Simmentaler (S) bulls and by back-crossing the F1 cows to the sire lines. A LSU is the equivalent of an ox of 450 kg with a daily weight gain of 500 g on grass pastures with a mean digestible energy (DE) content of 55% and a requirement of 75 MJ metabolizable energy (ME). Crossbreeding with A as dam line increased the kgC/LSU on average by 8 kg (+6%) - with the CA cross producing the most kgC/LSU (+8%) above that of the AA. The BA dam in crosses with C, H and S, increased kgC/LSU on average by 26 kg (+18%) above that of the AA dam, with the H x BA cross, producing the most kgC/LSU (+21%). The BA, CA, HA and SA F1 dam lines, back-crossed to the sire line breeds, increased kgC/LSU on average by 30 kg (21%), 21 kg (15%), 19kg (13%) and 26 kg (18%) above the that of the AA, respectively. The big differences between breeds in kgC/LSU provide the opportunity to facilitate effective crossbreeding that can be useful in the era of climate change. From this study it is clear that cow productivity can be increased by up to 21% through properly designed, sustainable crossbreeding systems, thereby reducing the carbon footprint of beef production.Keywords: Carbon footprint, cow productivity, kilogram calf, production systems

2012 ◽  
Vol 524-527 ◽  
pp. 3609-3612
Author(s):  
Wen Bao

Agricultural development, especially agricultural production in mountain areas, is fundamentally linked to climatic conditions, so any changes in climate will necessarily affect agricultural development. China’s agriculture faces several development challenges including those linked to climate change. Climate change is threatening food production systems and therefore the livelihoods of hundreds of millions of people who depend on agriculture in China. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather and because people involved in agriculture tend to be poorer compared with urban residents. Consistent warming trends and more frequent and intense meteorological disasters have been observed across China in recent decades. In line with climate change across the whole country, it will require agricultural development to implement comprehensive mitigation and adaptation strategies.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1696
Author(s):  
Ridha Ibidhi ◽  
Rajaraman Bharanidharan ◽  
Jong-Geun Kim ◽  
Woo-Hyeong Hong ◽  
In-Sik Nam ◽  
...  

This study was performed to update and generate prediction equations for converting digestible energy (DE) to metabolizable energy (ME) for Korean Hanwoo beef cattle, taking into consideration the gender (male and female) and body weights (BW above and below 350 kg) of the animals. The data consisted of 141 measurements from respiratory chambers with a wide range of diets and energy intake levels. A simple linear regression of the overall unadjusted data suggested a strong relationship between the DE and ME (Mcal/kg DM): ME = 0.8722 × DE + 0.0016 (coefficient of determination (R2) = 0.946, root mean square error (RMSE) = 0.107, p < 0.001 for intercept and slope). Mixed-model regression analyses to adjust for the effects of the experiment from which the data were obtained similarly showed a strong linear relationship between the DE and ME (Mcal/kg of DM): ME = 0.9215 × DE − 0.1434 (R2 = 0.999, RMSE = 0.004, p < 0.001 for the intercept and slope). The DE was strongly related to the ME for both genders: ME = 0.8621 × DE + 0.0808 (R2 = 0.9600, RMSE = 0.083, p < 0.001 for the intercept and slope) and ME = 0.7785 × DE + 0.1546 (R2 = 0.971, RMSE = 0.070, p < 0.001 for the intercept and slope) for male and female Hanwoo cattle, respectively. By BW, the simple linear regression similarly showed a strong relationship between the DE and ME for Hanwoo above and below 350 kg BW: ME = 0.9833 × DE − 0.2760 (R2 = 0.991, RMSE = 0.055, p < 0.001 for the intercept and slope) and ME = 0.72975 × DE + 0.38744 (R2 = 0.913, RMSE = 0.100, p < 0.001 for the intercept and slope), respectively. A multiple regression using the DE and dietary factors as independent variables did not improve the accuracy of the ME prediction (ME = 1.149 × DE − 0.045 × crude protein + 0.011 × neutral detergent fibre − 0.027 × acid detergent fibre + 0.683).


2010 ◽  
Vol 54 (2) ◽  
pp. 159-183
Author(s):  
Kola Odeku ◽  
Edson Meyer

AbstractThis article examines how the South African government, realizing the country's vulnerability to climate change, deemed it necessary to strengthen adaptation and mitigation measures and put in place legal and institutional frameworks to ensure implementation and compliance. Government must take responsibility for industry's inaction by implementing policies on climate change and, more importantly, through a visible change in government policy to hold industry accountable. The stringent policies and strategies being put in place are reducing vulnerability and also enhancing a broad spectrum of capacity in responding to environmental, climatic, resource and economic perturbations. The article further reviews state of the art methods and tools available to strengthen mitigation and adaptation strategies and measures in the areas of the existing frameworks regarding climate change. It also considers various measures by Eskom in particular, and strategies embarked upon by South Africa's national and local governments to reduce greenhouse gas emissions.


2019 ◽  
Vol 11 (3) ◽  
pp. 230 ◽  
Author(s):  
Tien Pham ◽  
Naoto Yokoya ◽  
Dieu Bui ◽  
Kunihiko Yoshino ◽  
Daniel Friess

The mangrove ecosystem plays a vital role in the global carbon cycle, by reducing greenhouse gas emissions and mitigating the impacts of climate change. However, mangroves have been lost worldwide, resulting in substantial carbon stock losses. Additionally, some aspects of the mangrove ecosystem remain poorly characterized compared to other forest ecosystems due to practical difficulties in measuring and monitoring mangrove biomass and their carbon stocks. Without a quantitative method for effectively monitoring biophysical parameters and carbon stocks in mangroves, robust policies and actions for sustainably conserving mangroves in the context of climate change mitigation and adaptation are more difficult. In this context, remote sensing provides an important tool for monitoring mangroves and identifying attributes such as species, biomass, and carbon stocks. A wide range of studies is based on optical imagery (aerial photography, multispectral, and hyperspectral) and synthetic aperture radar (SAR) data. Remote sensing approaches have been proven effective for mapping mangrove species, estimating their biomass, and assessing changes in their extent. This review provides an overview of the techniques that are currently being used to map various attributes of mangroves, summarizes the studies that have been undertaken since 2010 on a variety of remote sensing applications for monitoring mangroves, and addresses the limitations of these studies. We see several key future directions for the potential use of remote sensing techniques combined with machine learning techniques for mapping mangrove areas and species, and evaluating their biomass and carbon stocks.


Author(s):  
Ratko Ristić ◽  
Ivan Malušević ◽  
Boris Radić ◽  
Slobodan Milanović ◽  
Vukašin Milčanović ◽  
...  

Forest ecosystems provide a wide range of environmental services with an important role in the Earth’s life-support system. Climate change in Southeastern Europe (SEE) and forecasts for the period until 2070 have a huge impact on the present and future planning in forestry and watershed management, due to the observed trends: the increment of mean annual air temperature from 2,5–5,0 °C until the end of the XXI century; redistribution of annual precipitation, with much more precipitation in the spring-summer period, during short, intensive rain events; a decrease of annual precipitation and soil moisture of 10–20 %, with extreme consequences: dieback and disappearance of forests in huge areas of hilly-mountainous regions. Degradation and loss of forests leads to spread and intensification of soil erosion, with frequent torrential floods, mudflows, landslides, and avalanches. Stable forest ecosystems are pillars of sustainable development, repopulation and could provide means and resources to battle and overcome poverty in moun-tainous regions of southeast Europe.


2016 ◽  
Vol 56 (3) ◽  
pp. 385 ◽  
Author(s):  
D. Cottle ◽  
R. Eckard ◽  
S. Bray ◽  
M. Sullivan

In 2014, the Australian Government implemented the Emissions Reduction Fund to offer incentives for businesses to reduce greenhouse gas (GHG) emissions by following approved methods. Beef cattle businesses in northern Australia can participate by applying the ‘reducing GHG emissions by feeding nitrates to beef cattle’ methodology and the ‘beef cattle herd management’ methods. The nitrate (NO3) method requires that each baseline area must demonstrate a history of urea use. Projects earn Australian carbon credit units (ACCU) for reducing enteric methane emissions by substituting NO3 for urea at the same amount of fed nitrogen. NO3 must be fed in the form of a lick block because most operations do not have labour or equipment to manage daily supplementation. NO3 concentrations, after a 2-week adaptation period, must not exceed 50 g NO3/adult animal equivalent per day or 7 g NO3/kg dry matter intake per day to reduce the risk of NO3 toxicity. There is also a ‘beef cattle herd management’ method, approved in 2015, that covers activities that improve the herd emission intensity (emissions per unit of product sold) through change in the diet or management. The present study was conducted to compare the required ACCU or supplement prices for a 2% return on capital when feeding a low or high supplement concentration to breeding stock of either (1) urea, (2) three different forms of NO3 or (3) cottonseed meal (CSM), at N concentrations equivalent to 25 or 50 g urea/animal equivalent, to fasten steer entry to a feedlot (backgrounding), in a typical breeder herd on the coastal speargrass land types in central Queensland. Monte Carlo simulations were run using the software @risk, with probability functions used for (1) urea, NO3 and CSM prices, (2) GHG mitigation, (3) livestock prices and (4) carbon price. Increasing the weight of steers at a set turnoff month by feeding CSM was found to be the most cost-effective option, with or without including the offset income. The required ACCU prices for a 2% return on capital were an order of magnitude higher than were indicative carbon prices in 2015 for the three forms of NO3. The likely costs of participating in ERF projects would reduce the return on capital for all mitigation options.


2020 ◽  
pp. 096366252096669
Author(s):  
Jackie M. Getson ◽  
Anders E. Sjöstrand ◽  
Sarah P. Church ◽  
Roberta Weiner ◽  
Jerry L. Hatfield ◽  
...  

Although the scientific community has reached a consensus that anthropogenic climate change is a severe and pressing issue, climate change remains a contentious debate with the United States public. Through a survey ( N = 273), we explored climate professionals’ perspectives on their role and responsibility to promote climate change adaptation/mitigation strategies related to agroecosystems. They believed that climate professionals have a social responsibility to provide scientific input to both policymakers and the public. There was strong agreement that media, political, and public support is necessary for development, and near unanimous agreement for implementation, of climate change mitigation/adaptation strategies. This study highlights the climate professionals’ perceptions of their responsibility to provide scientific input, but also demonstrates that they believe the responsibility does not rest solely on their shoulders. Further research should explore scientists’ perceptions of their and others’ policy roles and scientists’ interactions with different influencers of adaptation/mitigation policy.


Sign in / Sign up

Export Citation Format

Share Document