scholarly journals MiR-28-3p enhances healing of fracture via negative regulation of the target gene Sox6 and activation of PI3K/Akt signaling pathway

2020 ◽  
Vol 19 (10) ◽  
pp. 2061-2066
Author(s):  
Wei Li ◽  
Xin Dong ◽  
Jian Zhao

Purpose: To investigate the effect of miR-28-3p on fracture healing, and the involvement of Sox6 gene and PI3K/Akt signaling pathway in the process.Methods: Mouse osteoblast cell lines were cultured in vitro, and miR-28-3p over-expression and inhibitory plasmids were separately added to the medium. The corresponding control groups were set up. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to measure the mRNA expressions of the osteogenesis-related genes Col1a1, Col-Ⅱ and Col-X in osteoblasts. The protein expressions of Sox6, Col1a1, Col-Ⅱ, Col-X, PI3K, p-PI3K, Akt and p-Akt in rat cartilage tissue were determined with Western blotting assay.Results: The expression of Sox6 protein in the miR-28-3p over-expression group was significantly reduced, when compared with the miR-28 overexpression control, but Sox6 protein expression in the miR-28-3p inhibition group was significantly increased, relative to inhibition control group (p < 0.05). In the miR-28-3p over-expression and Sox6 over-expression groups, Col1a1 protein expression was significantly increased, while Col-Ⅱ and Col-X protein expressions decreased, when compared with the respective over-expression control group (p < 0.05). Over-expression of miR-28-3p markedly upregulated phosphorylation levels of PI3K and Akt, relative to over-expression control group, while miR-28-3p inhibition significantly downregulated the phosphorylations of PI3K and Akt, relative to the inhibition control group (p < 0.05).Conclusion: Over-expression of miR-28-3p may enhance the healing of fractures by induction of PI3K/Akt signaling route via negative regulation of the expression of Sox6 gene. Keywords: MiR-28-3p, Sox6, PI3K/Akt signaling pathway, Fracture healing

2021 ◽  
Vol 11 (3) ◽  
pp. 402-406
Author(s):  
Huaping Gong ◽  
Long Chen ◽  
Ruipeng Dong

This study aimed to investigate the effect and mechanism of TRIM14 downregulation on the apoptosis, migration, and invasion of cancerous pancreatic PANC-1 cells. PANC-1 cells cultured in vitrowere classified to a control (normal culture), negative (neutral siRNA transfection), and siTRIM14 group (TRIM14 siRNA transfection). RT-PCR was adopted to test TRIM14 mRNA expression. Cellular proliferation was determined by CCK-8, and transwell chamber invasion and apoptosis by flow cytometry. AKT signaling pathway related proteins CyclinD1, MMP-2, Bcl-2, and AKT phosphorylation, and TRIMI14 protein expression, were determined by western blotting. Compared with the control group, TRIMI14 expression, cellular proliferation ability, infiltration, transfer AKT phosphorylation, and TRIMI14, CyclinD1, MMP-2, and Bcl-2 protein expression were greatly reduced in siTRIM14 cells, and the apoptotic ability was significantly enhanced (P < 0.05). However, no striking differences were detected between the negative and control groups (P > 0.05). Downregulating TRIM14 expression can inhibit the proliferation, invasion, and migration of PANC-1 cells, and promote apoptosis. The mechanism may be associated with the inhibition of AKT signaling pathway activation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Bing Jing ◽  
Hongjuan Ji ◽  
Rui Jiang ◽  
Jinlong Wang

Abstract Background Osteoporosis is a widespread chronic disease characterized by low bone density. There is currently no gold standard treatment for osteoporosis. The aim of this study was to explore the role and mechanism of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. Methods MC3T3-E1 cells were divided into control and different dose of Astragaloside (10, 20, 40, 50, and 60 μg/ml). Then, ALP and ARS staining were performed to identify the effects of Astragaloside for early and late osteogenic capacity of MC3T3-E1 cells, respectively. Real-time PCR and western blot were performed to assess the ALP, OCN, and OSX expression. PI3K/Akt signaling pathway molecules were then assessed by Western blot. Finally, PI3K inhibitor, LY294002, was implemented to assess the mechanism of Astragaloside in promoting osteogenic differentiation of MC3T3-E1 cells. Results Astragaloside significantly increased the cell viability than the control group. Moreover, Astragaloside enhanced the ALP activity and calcium deposition than the control groups. Compared with the control group, Astragaloside increased the ALP, OCN, and OSX expression in a dose-response manner. Western blot assay further confirmed the real-time PCR results. Astragaloside could significantly increase the p-PI3K and p-Akt expression than the control group. LY294002 partially reversed the promotion effects of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. LY294002 partially reversed the promotion effects of Astragaloside on ALP, OCN, and OSX of MC3T3-E1 cells. Conclusion The present study suggested that Astragaloside promoted osteogenic differentiation of MC3T3-E1 cells through regulating PI3K/Akt signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiao-jun Gou ◽  
Huan-huan Bai ◽  
Li-wei Liu ◽  
Hong-yu Chen ◽  
Qi Shi ◽  
...  

Objective. To explore the ability of asiatic acid to interfere with the invasion and proliferation of breast cancer cells by inhibiting WAVE3 expression and activation through the PI3K/AKT signaling pathway. Methods. The MDA-MB-231 cells with strong invasiveness were screened by transwell assay, and plasmids with high expression of WAVE3 were constructed for transfection. The transfection effect and protein expression level of plasmids were verified by PCR and WB. The effects of asiatic acid on cell proliferation and invasion were investigated by flow cytometry. The xenografted tumor models in nude mice were established to study the antitumor activity of asiatic acid. Results. Asiatic acid significantly inhibited the activity of MDA-MB-231 cells, and the expression level of WAVE3 increased significantly in the tissue of ductal carcinoma in situ and was lower than that in the metastasis group. After plasmid transfection, the mRNA and protein expression of WAVE3 increased significantly in the cells. Asiatic acid at different concentrations had an impact on cell apoptosis and invasion and could significantly inhibit the expression of WAVE3, P53, p-PI3K, p-AKT, and other proteins. The T/C(%) of asiatic acid (50 mg/kg) for MDA-MB-231(F10) xenografted tumor in nude mice was 46.33%, with a tumor inhibition rate of 59.55%. Asiatic acid could significantly inhibit the growth of MDA-MB-231 (F10) xenografted tumors in nude mice (p<0.05). Conclusions. Asiatic acid interferes with the ability of breast cancer cells to invade and proliferate by inhibiting WAVE3 expression and activation and the mechanism of action may be related to the PI3K/AKT signaling pathway.


2020 ◽  
Vol 20 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Liangtong Li ◽  
Xiangzi Li ◽  
Zhe Zhang ◽  
Li Liu ◽  
Tongtong Liu ◽  
...  

Background: The effects of hydrogen-rich water on PI3K/AKT-mediated apoptosis were studied in rats subjected to myocardial ischemia-reperfusion injury (MIRI). Methdos: Sixty rats were divided randomly into a hydrogen-rich water group and a control group. The hearts were removed and fixed in a Langendorff device. Hearts from the control group were perfused with K-R solution, and hearts from the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The two treatment groups were then divided randomly into pre-ischemic period, ischemic period and reperfusion period groups(10 rats per group), which were subjected to reverse perfusion for 10 min, normal treatment for 20 min, and reperfusion for 20 min, respectively. The mRNA and protein expression levels of PI3K, AKT, p-AKT, FoxO1, Bim and Caspase-3 in each group were detected by RT-qPCR, immunohistochemistry (IHC) and Western blotting. Caspase-3 activity was detected by spectrophotometry. Results: Among the hydrogen-rich water group, the PI3K/AKT signaling pathway was significantly activated, and FoxO1, Bim, and Caspase-3 mRNA and protein levels were significantly decreased in ischemia-reperfusion subgroup compared with the preischemic and ischemic subgroups. In the ischemia-reperfusion hydrogen-rich water group, PI3K, AKT and p-AKT mRNA and protein expression levels were increased while the FoxO1, Bim and Caspase-3 expression levels were significantly decreased compared with those in the corresponding control group (p<0.05). Conclusion: Hydrogen-rich water can activate the PI3K/AKT signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts, and inhibit cardiomyocyte apoptosis.


2020 ◽  
Vol 19 (5) ◽  
pp. 957-963
Author(s):  
ShanPing Li ◽  
SenMao Hu

Purpose: To investigate the anti-proliferative effect of cinnamic hydroxamic acid (CHA) on gastric cancer (GC) cells, and its mechanism of action.Methods: Two GC cell lines (SGC-7901 and MKN1) and normal human gastric epithelial cells (GES1) were used for this study. The GC cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)supplemented with 10 % fetal bovine serum (FBS) and 1 % penicillin/streptomycin solution at 37 °C for 24 h in a humidified atmosphere of 5 % CO2 and 95 % air. GES1 cells were cultured in RPMI medium supplemented with 10 % FBS only. Cell viability and apoptosis were determined using 3 (4,5 dimethyl thiazol 2 yl) 2,5 diphenyl 2H tetrazolium bromide (MTT), and flow cytometric assays, respectively. The level of expression of microRNA-145 (miR-145) was determined using real-time quantitative polymerase chain reaction (qRT-PCR). Protein expressions of c-Myc, p-AKT, PI3K, p21, and matrix metalloproteinase (MMP)-2 and MMP-9were determined using Western blotting.Results: Treatment of GC cells with CHA for 72 h led to significant and dose-dependent reduction in their viability, and significant and dose-dependent increase in the number of apoptotic cells (p < 0.05). It also significantly arrested GC cell cycle at G1 phase (p < 0.05). The treatment significantly and dosedependently decreased SGC-7901 and MKN1 cell migration and invasion, and upregulated miR-145 mRNA expression (p < 0.05). The expression of miR-145 mRNA was significantly higher in MKN1 cells than in SGC-7901cells (p < 0.05). Treatment of SGC-7901 and MKN1 cells with CHA significantly downregulated protein expressions of c-Myc, MMP-2/9, PI3K and p-AKT, but upregulated p21 protein expression (p< 0.05).Conclusion: These results show that CHA inhibits the proliferation of GC cells via upregulation of miR-145 expression and down-regulation of  P13K/Akt signaling pathway. Therefore, CHA has a good potential as a therapeutic agent for the management of gastric cancer Keywords: Apoptosis, Cinnamic hydroxamic acid, Gastric cancer, Metastasis, Proliferation


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ruifang Xiong ◽  
Xiangxue Lu ◽  
Jinghong Song ◽  
Han Li ◽  
Shixiang Wang

Abstract Background Cardiovascular disease is the most common complication and leading cause of death in maintenance hemodialysis patients. The protection mechanism of hydrogen sulfide (H2S) and the specific role of conventional protein kinase C βII (cPKCβII)/Akt signaling pathway in the formation of atherosclerosis is still controversial. Methods 8-week-old male ApoE−/− mice were treated with 5/6 nephrectomy and high-fat diet to make uremia accelerated atherosclerosis (UAAS) model. Mice were divided into normal control group (control group), sham operation group (sham group), UAAS group, L-cysteine group (UAAS+L-cys group), sodium hydrosulfide group (UAAS+NaHS group), and propargylglycine group (UAAS+PPG group). Western blot was used to detect cPKCβII activation, Akt phosphorylation and endothelial nitric oxide synthase (eNOS) expression in mice aorta. Results The membrane translocation of cPKCβII in UAAS group was higher than sham group, and L-cys or NaHS injection could suppress the membrane translocation, but PPG treatment resulted in more membrane translocation of cPKCβII (P < 0.05, n = 6 per group). Akt phosphorylation and the eNOS expression in UAAS group was lower than sham group, and L-cys or NaHS injection could suppress the degradation of Akt phosphorylation and the eNOS expression, but PPG treatment resulted in more decrease in the Akt phosphorylation and the eNOS expression (P < 0.05, n = 6 per group). Conclusion Endogenous cystathionine-γ-lyase (CSE)/H2S system protected against the formation of UAAS via cPKCβII/Akt signal pathway. The imbalance of CSE/H2S system may participate in the formation of UAAS by affecting the expression of downstream molecule eNOS, which may be mediated by cPKCβII/Akt signaling pathway.


2020 ◽  
Vol 10 (4) ◽  
pp. 477-481
Author(s):  
Hong Bing Xiao ◽  
Wei Hu ◽  
Jun Gu ◽  
Dandan Li

Objective: To assess promethazine's effect on myocardial cells in rats with myocardial ischemiareperfusion injury (MIRI). Methods: The rat MIRI model was established and treated as the ischemia group. MIRI rats were treated with promethazine and included as the drug group. Rats only undergoing thoracotomy were enrolled as the control group. The physiological function of heart was assessed using the ultrasound cardiotachograph, and the apoptosis and proliferation of myocardial cells were detected using TUNEL assay and Ki67 staining, respectively. Moreover, the expressions of Caspase-3, Bcl-2, PI3K, GSK-3, PDK-1 and PKB were determined via Western blotting and qPCR. Results: There were significant differences in cardiac function indexes [left ventricular enddiastolic diameter (LVEDd), left ventricular end systolic diameter (LVESd), ejection fraction (EF) and fractional shortening (FS)] among the three groups (p= 0 002, 0.004, 0.025 and 0.012), and ischemia group had the highest LVEDd [(8.73± 0.31) mm] and LVESd [(7.98± 0.37) mm] and lowest EF [(42± 3.8)%] and FS [(40.3± 2.8)%]. The number of apoptotic myocardial cells was significant higher in ischemia group than control ( p< 0 05), while it was significantly declined after treatment with promethazine ( p< 0 05). Caspase-3 was significantly upregulated and Bcl-2 was downregulated in ischemia group which were all significantly reversed in drug group. Besides, Ki67 level was significantly reduced in ischemia group compared to control and higher in drug group than ischemia group, indicating that drug treatment increased cell proliferation ability. The levels of PI3K, GSK-3 and PKB in myocardial tissues were significantly declined in ischemia group and elevated after the treatment with promethazine without difference of PDK-1 level in myocardial tissues among the three groups. Conclusion: Promethazine inhibits apoptosis and promotes proliferation of myocardial cells in MIRI rats through PI3K/Akt signaling pathway.


2018 ◽  
Vol 51 (2) ◽  
pp. 827-841 ◽  
Author(s):  
Xiaofang Wang ◽  
Yuan Liu ◽  
Lili Xiao ◽  
Ling Li ◽  
Xiaoyan Zhao ◽  
...  

Background/Aims: Cardiac hypertrophy is a major predisposing factor for heart failure and sudden cardiac death. Hyperoside (Hyp), a flavonoid isolated from Rhododendron ponticum L., is a primary component of Chinese traditional patent medicines. Numerous studies have shown that Hyp exerts marked anti-viral, anti-inflammatory, anti-oxidant, anti-cancer, anti-ischemic, and particularly cardio-protective effects. However, the effects of Hyp on cardiac hypertrophy have not been explored. The aims of this study were to determine whether Hyp could protect against cardiac remodeling and to clarify the potential molecular mechanisms. Methods: Neonatal rat cardiac myocytes were isolated and treated with different concentrations of Hyp, then cultured with angiotensin II for 48 h. Mice were subjected to either aortic banding or sham surgery (control group). One week after surgery, the mice were treated with Hyp (20 mg/kg/day) or vehicle by oral gavage for 7 weeks. Hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, histology, and biomarkers. Results: Hyp pretreatment suppressed angiotensin II-induced hypertrophy in cardiomyocytes. Hyp exerted no basal effects but attenuated cardiac hypertrophy and dysfunction, fibrosis, inflammation, and oxidative stress induced by pressure overload. Both in vivo and in vitro experiments demonstrated that the effect of Hyp on cardiac hypertrophy was mediated by blocking activation of the AKT signaling pathway. Conclusion: Hyp improves cardiac function and prevents the development of cardiac hypertrophy via AKT signaling. Our results suggest a protective effect of Hyp on pressure overload-induced cardiac remodeling. Taken together, Hyp may have a role in the pharmacological therapy of cardiac hypertrophy.


2020 ◽  
Vol 75 (4) ◽  
pp. 387-397
Author(s):  
Linlin Wei ◽  
Kexue Zeng ◽  
Juanjuan Gai ◽  
Feixiong Zhou ◽  
Zhenglin Wei ◽  
...  

OBJECTIVE: To study the effect of acupuncture on neurovascular units after cerebral infarction (CI) in rats through the phosphatidylinositol 3-hydroxy kinase/protein kinase B (PI3K/AKT) signaling pathway. METHODS: A total of 36 Sprague-Dawley rats were randomly divided into sham group (n = 12), model group (n = 12) and acupuncture group (n = 12). The external carotid artery was only exposed in model group, while the post-CI ischemia-reperfusion model was established using the suture method in the other 2 groups. After modeling, the rats in sham group and model group were fixed and sampled, while those in acupuncture group were treated with acupuncture intervention for 2 weeks and sampled. The neurological deficits of rats were evaluated using the Zea-Longa score, and the spatial learning and memory of rats were detected via water maze test. Moreover, the expressions of vascular endothelial growth factor (VEGF), growth associated protein-43 (GAP-43) and synuclein (SYN) in brain tissues were detected via immunohistochemistry, and the relative protein expressions of PI3K p85, PI3K p110 and p-AKT were detected via Western blotting. The messenger ribonucleic acid (mRNA) expressions of VEGF, GAP-43 and SYN were detected via quantitative polymerase chain reaction (qPCR). RESULTS: The Zea-Longa score was significantly increased in model group and acupuncture group compared with that in sham group (p < 0.05), while it significantly declined in acupuncture group compared with that in model group (p < 0.05). The escape latency was significantly prolonged and the times of crossing platform were significantly reduced in model group and acupuncture group compared with those in sham group (p < 0.05), while the escape latency was significantly shortened and the times of crossing platform were significantly increased in acupuncture group compared with those in model group (p < 0.05). The positive expressions of VEGF, GAP-43 and SYN were obviously increased in model group and acupuncture group compared with those in sham group (p < 0.05), while they were obviously increased in acupuncture group compared with those in model group (p < 0.05). Besides, model group and acupuncture group had significantly higher relative protein expressions of PI3K p85, PI3K p110 and p-AKT than sham group (p < 0.05), while acupuncture group also had significantly higher relative protein expressions of PI3K p85, PI3K p110 and p-AKT than model group (p < 0.05). The relative mRNA expressions of VEGF, GAP-43 and SYN were remarkably increased in model group and acupuncture group compared with those in sham group (p < 0.05), while they were remarkably increased in acupuncture group compared with those in model group (p < 0.05). CONCLUSION: Acupuncture promotes the repair of neurovascular units after CI in rats through activating the PI3K/AKT signaling pathway, thereby exerting a protective effect on neurovascular units.


2015 ◽  
Vol 36 (3) ◽  
pp. 956-965 ◽  
Author(s):  
Qiaoyun Chen ◽  
Rong Qin ◽  
Yue Fang ◽  
Hao Li

Background: Berberine, a well-known component of the Chinese herbal medicine Huanglian, has wide range of biochemical and pharmacological effects, including antineoplastic effect, but the exact mechanisms remain unclear. The aim of the present study was to evaluate the potential chemo-sensitization effect of berberine in ovarian cancer cell line A2780. Methods: The expression of miR-93 was measure by RT-PCR. The target of miR-93 was confirmed by luciferase activity assay. Hoechst 33258 staining, Annexin V and PI double staining were used for apoptosis analysis. Results: In this study, we found A2780/DDP cells that were incubated with berberine combined with cisplatin had a significantly lower survival than the control group. Berberine enhanced cisplatin induced apoptosis and induced G0/G1 cell cycle arrest in A2780 cells. Next, we observed that the miR-93 levels in cisplatin resistant cell lines were higher than that in cisplatin sensitive cell lines. Furthermore, our study found berberine could inhibit miR-93 expression and function in ovarian cancer, as shown by an increase of its target PTEN, an important tumor suppressor in ovarian cancer. A2780 cells that were treated with PTEN siRNA had increased survival compared to NC group and this could be partly alleviated by the AKT inhibitor Triciribine. More importantly, A2780 cells that were treated with PTEN siRNA had a survival pattern that is similar to cells with miR-93 overexpression. Conclusion: The results suggested that berberine modulated the sensitivity of cisplatin through miR-93/PTEN/AKT signaling pathway in the ovarian cancer cells.


Sign in / Sign up

Export Citation Format

Share Document