scholarly journals Characterization and evaluation of the performance of starch and cellulose as excipients for direct compression technique

2020 ◽  
Vol 19 (8) ◽  
pp. 1569-1576
Author(s):  
Hamad S. Alyami ◽  
Samer S. Abu-Alrub ◽  
Mater H. Mahnashi ◽  
Mohammad H. Alyami ◽  
Osaid T. Al Meanazel

Purpose: To investigate the influence of two often-used excipients (starch and microcrystalline cellulose) on the physical properties of powder blends and tablets that contain mannitol as diluent.Methods: Powder and powder mixtures of three commonly used excipients (starch, mannitol and microcrystalline cellulose) were thoroughly examined using the angle of repose for flowability, particle size analyzer to determine the diameter of the particles, scanning electron microscopy (SEM) for morphological assessment, and x-ray diffraction to determine crystalline/amorphous characteristics. Tablets were prepared by direct compression technique and were evaluated for mechanical strength and disintegration behavior as part of quality control test.Results: The results showed that increase in MCC concentration of the mixture leads to significantly enhanced flowability (p < 0.05) when compared to starch. The angle of repose for mannitol/MCC powder mixture with 70 % w/w MCC was approximately 29°, indicating good flow properties of thepowder mix. Moreover, starch tablets containing MCC exhibited better mechanical strength and longer disintegration time, while, at 1:1 ratio of MCC and mannitol, tablet disintegration was faster (33.0 ± 5.2s)Conclusion: MCC (at 30 %w/w in the blend) produces optimal flow of the powder blend and superior mechanical strength, Keywords: Tablet disintegration, Flowability, Starch, Hardness, Mechanical strength

2020 ◽  
Vol 11 (3) ◽  
pp. 4323-4333
Author(s):  
Eva monica ◽  
Rollando Rollando ◽  
Rehmadanta Sitepu ◽  
Devi Rusvita Khoirul Nisah ◽  
Laurensia Nina Irawati ◽  
...  

The objective of this research was to investigate paracetamol FDT formula with potato starch and xanthan gum or glycine or ac di sol combination that can produce the best tablet quality. The tablets were prepared by direct compression technique. Superdisintegrant such as Glycine, Ac di sol, Xanthan Gum, and Potato Starch Extract was optimized as 1-19 % on the basis of least disintegration time. Binders such as HPMC were optimized along with optimized superdisintegrant concentration. 3,5% HPMC was selected as optimum binder concentration on the basis of least disintegration time. Granule parameters included in the analysis were flowability, angle of repose, Carr’s index, Hausner’s ratio, and loss on drying (LOD). Tablet parameters included in the analysis were hardness, friability, disintegration time, dissolution, wetting time, and absorption ratio. The result was analyzed by Design Expert 11.1.0.1 program to decide the combination of superdisintegrant that can provide the best tablet qualities. The result showed that potato starch 15.162% and xanthan gum 4,838%, potato starch 15,050% and glycine 4,950%, and potato starch 18.390% and ac di sol 1.610%. Combination of superdisintegrant that can provide the best tablet qualities. It was concluded that, by employing commonly available pharmaceutical excipients such as superdisintegrants, hydrophilic and swellable excipients and proper filler, a fast disintegrating tablet of Paracetamol in tablet dosage form, were formulated successfully with desired characteristics.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Emmanuel O. Olorunsola ◽  
Grace A. Akpan ◽  
Michael U. Adikwu

This study was aimed at evaluating chitosan-microcrystalline cellulose blends as direct compression excipients. Crab shell chitosan, α-lactose monohydrate, and microcrystalline cellulose powders were characterized. Blends of the microcrystalline cellulose and chitosan in ratios 9 : 1, 4 : 1, 2 : 1, and 1 : 1 as direct compression excipients were made to constitute 60% of metronidazole tablets. Similar tablets containing blends of the microcrystalline cellulose and α-lactose monohydrate as well as those containing pure microcrystalline cellulose were also produced. The compact density, tensile strength, porosity, disintegration time, and dissolution rate of tablets were determined. Chitosan had higher moisture content (7.66%) and higher moisture sorption capacity (1.33%) compared to microcrystalline cellulose and lactose. It also showed better flow properties (Carr’s index of 18.9% and Hausner’s ratio of 1.23). Compact density of tablets increased but tensile strength decreased with increase in the proportion of chitosan in the binary mixtures. In contrast to lactose, the disintegration time increased and the dissolution rate decreased with increase in the proportion of chitosan. This study has shown that chitosan promotes flowability of powder mix and rapid disintegration of tablet. However, incorporation of equal proportions of microcrystalline cellulose and chitosan leads to production of extended-release tablet. Therefore, chitosan promotes tablet disintegration at low concentration and enables extended-release at higher concentration.


Author(s):  
Avilash Carpenter ◽  
M.K. Gupta ◽  
Neetesh Kumar Jain ◽  
Urvashi Sharma ◽  
Rahul Sisodiya

Aim: The main of the study is to formulate and develop orally disintegrating fast dissolving tablet of Metoclopramide hydrochloride. Material & Methods: Before formulation and development of selected drug, the standard curve in buffer was prepared and absorbance at selected maxima was taken. Then two different disintegrating agents were selected and drug was mixed with disintegrating agents in different ratio. Various Preformulation parameters and evaluation of tablet i.e. disintegration time, dissolution time, friability, hardness, thickness were measured by standard procedure. Result & Discussion: The angle of repose for all the batches prepared. The values were found to be in the range of 30.46 to 36.45, which indicates good flow property for the powder blend according to the USP. The bulk density and tapped density for all the batches varied from 0.49 to 0.54 g/mL and 0.66 to 0.73, respectively. Carr’s index values were found to be in the range of 23.33 to 25.88, which is satisfactory for the powders as well as implies that the blends have good compressibility. Hausner ratio values obtained were in the range of 1.22 to 1.36, which shows a passable flow property for the powder blend based on the USP. The results for tablet thickness and height for all batches was found to range from 4.45 to 4.72 mm and 3.67 to 3.69 mm, respectively. Hardness or breaking force of tablets for all batches was found to range from 32.8 to 36.2 N. Tablet formulations must show good mechanical strength with sufficient hardness in order to handle shipping and transportation. Friability values for all the formulations were found to be in the range of 0.22 % to 0.30 %. Conclusion: Orally disintegrating tablets were compressed in order to have sufficient mechanical strength and integrity to withstand handling, shipping and transportation. The formulation was shown to have a rapid disintegration time that complied with the USP (less than one minute). The data obtained from the stability studies indicated that the orally disintegrating mini-tablets of MTH were stable under different environmental storage conditions. Keywords: Formulation & Development, Fast Dissolving Tablet, Metoclopramide, Anti-Emetic Drug, Oral Disintegrating Tablet


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  


2021 ◽  
Vol 11 (5) ◽  
pp. 115-120
Author(s):  
Kritika Rai ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Khangar

Orally disintegrating tablets (ODT) disintegrate quickly with saliva when administered into the oral cavity and taken without water or chewed. ODT are easy to take for children and the elderly, who may experience difficultly in taking ordinary oral preparations such as tablets, capsules, and powders.  The ODT threes substantial benefits for the patient (or elder) who cannot swallow (Dysphagia), or who is not permitted water intake due to disease. The reason of the current research was to prepare taste masking oral disintegrating tablets of poorly soluble lornoxicam (LXM) by direct compression technique using Kyron T-114 (cation exchange resin) as a taste masking agent. With in various ratios the Drug-resin of 1:4 was established to present best taste masking. The superdisintegrants used in formulation are croscarmellose sodium and cross povidone. Among these croscarmellose sodium demonstrated superior drug release. The tablets were evaluated for friability, weight variation, wetting time, hardness, disintegration time and uniformity of content. Optimized formulations were evaluated for in vitro dissolution test. Amongst all the formulations F-6 was found to be most successful tablets prepared by this technique had disintegration time of 30sec and % CDR 94.78 within 30min. Hence, this advance can be utilized for taste masking of bitter pharmaceutical ingredients leading to superior patient compliance. Keywords: Oral disintegration tablets, Lornoxicam, Kyron T-114, Superdisintegrants, Direct Compression.


Author(s):  
K Kareemuddin Ansari ◽  
Neeraj Sharma

Valdecoxib is a selective COX- II inhibitor with anti – inflammatory, analgesic and antipyretic properties. The poor aqueous solubility of the drug leads to variable dissolution rates. In the present study an attempt has been made to prepare fast dissolving tablets of Valdecoxib in the oral cavity with enhanced dissolution rate. The fast dissolving tablets of Valdecoxib was prepared with some carriers (polymers) and super disintegrants such as Polyvinyl Pyrrolidone (PVP), Sodium Carboxy Methyl Cellulose (SCMC), Crospovidone NF and β – Cyclodextrin. The above mentioned all carriers and superdisintegrants were taken in different proportions of 5, 10, and 15%. All the formulations of the fast dissolving tablets of Valdecoxib were prepared by direct compression technique. The blend was examined for Angle of repose, Bulk density, Compressibility index and Hausner’s ratio. The prepared tablets were evaluated for hardness, drug content uniformity, friability, disintegration time and dissolution rate. An effective pleasant testing formulation released 99.88% drug within 10 minutes. The prepared formulations drug release was found to be comparable with the marketed dispersible tablets. Keywords: Fast dissolving tablets, Super-disintegrants, Valdecoxib, Crosspovidone, Sodium Carboxy Methyl Cellulose.


2020 ◽  
Vol 19 (5) ◽  
pp. 919-925
Author(s):  
Durgaramani Sivadasan ◽  
Muhammad Hadi Sultan ◽  
Osama Madkhali ◽  
Shamama Javed ◽  
Aamena Jabeen

Purpose: To develop orodispersible tablets (ODTs) of fexofenadine hydrochloride using three different superdisintegrants in various ratios and to compare their disintegration properties.Methods: Direct compression technique was used for the preparation of ODTs. Mannitol and Avicel CE-15 (microcrystalline cellulose and guar gum) were used as direct compression diluents. The disintegration time of tablets using each polymer (superdisintegrant) was evaluated as well as othertablet properties including weight fluctuation, hardness, friability, wetting time and water absorption ratio.Results: Satisfactory values were obtained for all the evaluated parameters. As the polymer concentration increased, there was a decrease in disintegration time. A comparison of the three different polymers used revealed that CCM3 formulated with 12 % croscarmellose sodium and 14.66 % lactose had the least disintegration time of 32.33 ± 3.23 s. In vitro release studies showed that the maximum drug release of 94.38 ± 0.12 % in 25 min was obtained for ODT tablets containing croscarmellose sodium (CCM3).Conclusion: The orodispersible tablets had quick disintegrating property which was achieved using superdisintegrants. Thus, superdisintegrants improve the disintegration efficiency of orodispersible fexofenadine tablets at low concentrations, when compared to traditional disintegrants. Keywords: Croscarmellose sodium, Direct compression, Fexofenadine, Orodispersible tablets


Author(s):  
Avani R. Gosai ◽  
Sanjay B. Patil ◽  
Krutika K. Sawant

The objective of the present investigation was to prepare oro dispersible tablets of ondansetron hydrochloride, because of its application in emesis condition, fast onset of action and avoidance of water is highly desirable. Tablets were prepared by direct compression using sodium starch glycolate and croscarmellose as superdisintegrants, as the combination of these two agents gives better disintegration of the tablet. Microcrystalline cellulose was used as diluent and mannitol, mint flavor, sodium saccharine to enhance the organoleptic properties of tablets. The tablets were evaluated for weight variation, mechanical strength, in vitro disintegration time, in vivo disintegration time, wetting time, and drug release characteristics. Hardness and friability data indicated good mechanical strength of tablets.  The results of in vitro disintegration time and in vivo disintegration time indicated that the tablets dispersed rapidly in mouth within 3 to 5 seconds. Dissolution study revealed faster release rate of ondansetron hydrochloride from the tablets as compared to pure drug and marketed conventional tablet formulation of ondansetron hydrochloride. It was concluded that superdisintegrants addition technique is a useful method for preparing oro dispersible tablets by direct compression method


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (10) ◽  
pp. 23-28
Author(s):  
M Kopparam ◽  
◽  
TV Kumar ◽  
DB Anantha Narayana ◽  
R Nandeesh

Ayurvedic formulary of India specifies the dose of Hingwastak churna to be 3-6 grams per day. It is difficult to swallow churna for patients. The objective of the present study was to develop Hingwastak churna granules and tablets with addition of organoleptic additives to improve the patient compliance. Granules and tablet formulations were developed by dry granulation (slugging) technique using different binders and other excipients. The granules were evaluated for angle of repose, tapped densities, compressibility index, organoleptic studies and stability study. The tablets were evaluated for weight uniformity, thickness, hardness, friability and disintegration time. Among the binding agents used 10% Avicel, CaCO3 and starch produced better granules with sufficient hardness and good flow properties. All the volunteers concurrently accepted the taste of Hingwastak churna granule formulation. Suitable formulation strategy can overcome the existing problem of Hingwastak churna.


1970 ◽  
Vol 2 (2) ◽  
pp. 59-65
Author(s):  
Abu Kalam Lutful Kabir ◽  
Shaikh Mukidur Rahman ◽  
Md Arshad Jahan ◽  
Abu Shara Shamsur Rouf

Difficulty in swallowing (dysphagia) is common among all age groups, especially in elderly and pediatrics. Mouth dissolving tablets constitute an innovative dosage forms that overcome the problems of swallowing and provides a quick onset of action. The purpose of this study was to formulate and evaluate mouth dissolving tablet of loratadine using a special preparation technology (pharmaburst Technology) with a super disintegrating agent (Croscarmellose sodium). Tablets were prepared by direct compression technique. The granules were evaluated for angle of repose, bulk density, tapped density, bulkiness, compressibility index and hausners ratio. The tablets were evaluated for hardness, thickness, uniformity of weight, friability, wetting time, water absorption ratio, disintegration time and drug content. In vitro release studies were performed using USP-II (paddle method) in 900ml of pH 1.2 at 50rpm. The physical properties of the prepared tablets did not show any significant variations and were found to have good physical integrity. Tablets prepared with pharmaburst B2 and Croscarmellose sodium showed a lesser disintegration time and wetting time of 27±0.10 and 38±0.13 seconds respectively. The best formulations were subjected to stability studies at 40ºC/75% RH for 60 days. Key words: Loratadine; pharmaburst B2; croscarmellose sodium; mouth dissolving tablets; direct compression.DOI: 10.3329/sjps.v2i2.5825Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 59-65


Sign in / Sign up

Export Citation Format

Share Document