Fructooligosaccharide Utilization by Salmonellae† and Potential Direct-Fed-Microbial Bacteria for Poultry

1995 ◽  
Vol 58 (11) ◽  
pp. 1192-1196 ◽  
Author(s):  
OMAR A. OYARZABAL ◽  
DONALD E. CONNER ◽  
WILLARD T. BLEVINS

Experiments were done to characterize potential direct-fed-microbial (DFM) bacteria for poultry and Salmonella spp. with respect to their abilities to metabolize fructooligosaccharide substrates (FOS-50® or pure FOS). Oxygen uptake (QO2) by these bacteria in media containing either glucose, FOS-50®, or FOS was determined with a Warburg respirometer. QO2 values for Salmonella spp. In media containing glucose or FOS-50® were similar(P >0.05); however, QO2 values in medium with FOS were significantly lower (P <0.05).The QO2 values for Enterococcus faecium, Lactococcus lactis, and Pediococcus sp. were considerably lower, reflecting the inability of these bacteria to oxidatively utilize these carbohydrates. The ability of E. faecium, L. lactis, and Pediococcus sp. to ferment glucose, FOS-50®, or FOS was determined by measuring pH changes of the media. All carbohydrate sources were fermented by these bacteria, but at different rates. The lowest pH values (<4.6) were obtained in inoculated media supplemented with glucose. The highest fermentation rate was achieved by Pediococcus sp. (pH< 5.2 at 7h), while L. lactis showed the slowest fermentation rate (pH > 6.4 at 10 h). To test the ability of Pediococcus sp. to hydrolyze FOS substrates, a cell-free extract was spectrophotometrically analyzed for the presence of active enzymes capable of hydrolyzing FOS or sucrose (a component of FOS). Hydrolysis of FOS (release of glucose) but not of sucrose was evident. However, equal activity was found in aqueous FOS without the cell-free extract, which suggests that free glucose was a component of the FOS solution tested.

1993 ◽  
Vol 2 (6) ◽  
pp. 489-496 ◽  
Author(s):  
Anne Pihlanto-Leppälä ◽  
Eero Pahkala ◽  
Veijo Antila

The aim of this study was to examine the enzymatic hydrolysis of κ-casein by isolating and identifying the released peptides. The enzymes employed in the study were chymosin, plasmin and trypsin, as well as a cell-free extract from three Lactobacillus helveticus and nine Lactobacillus casei strains. The findings showed that the bond most sensitive to the proteolytic activity of chymosin was the Phe 105-Met 106. After 24 hours of hydrolysis a few other bonds in the casein macropeptide were also cleaved. Plasmin was found to have weak proteolytic activity under the conditions of this study. When the enzyme-substrate ratio was raised from 1:200 to 1:50, a few peptides were released from the N-terminal region. Trypsin was found to hydrolyze several κ-casein bonds, and peptides were released from almost all regions of the protein. The proteases of Lactobacillus had less effect than chymosin, plasmin or trypsin. The strains could be divided into three categories. L. helveticus strains had activity on bonds in the mid-section and C-terminal region, L. casei strains EB, P3, P8 and A 1 had activity on bonds in the N- and C-terminal regions, while L. casei A5 and M9 had activity only on bonds in the C-terminal region.


1980 ◽  
Vol 45 (11) ◽  
pp. 2873-2882
Author(s):  
Vladislav Holba ◽  
Ján Benko

The kinetics of alkaline hydrolysis of succinic acid monomethyl and monopropyl esters were studied in mixed aqueous-nonaqueous media at various temperatures and ionic strengths. The results of measurements are discussed in terms of electrostatic and specific interactions between the reactants and other components of the reaction mixture. The kinetic parameters in the media under study are related to the influence of the cosolvent on the solvation sphere of the reactants.


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 22
Author(s):  
Natalia S. Brizuela ◽  
Marina Arnez-Arancibia ◽  
Liliana Semorile ◽  
María Ángeles Pozo-Bayón ◽  
Bárbara M. Bravo-Ferrada ◽  
...  

Lactiplantibacillus plantarum strain UNQLp 11 is a lactic acid bacterium with the potential to carry out malolactic fermentation (MLF) in red wines. Recently, the complete genome of UNQLp 11 was sequenced and this strain possesses four loci of the enzyme β-glucosidase. In order to demonstrate that these glucosidase enzymes could be functional under harsh wine conditions, we evaluated the hydrolysis of p-nitrophenyl-β-D-glucopyranoside (p-NPG) in synthetic wine with different ethanol contents (0%, 12%, and 14% v/v) and at different pH values (3.2, 3.5, and 3.8). Then, the hydrolysis of precursor n-octyl β-D-glucopyranoside was analyzed in sterile Pinot Noir wine (containing 14.5% v/v of ethanol, at different pH values) by headspace sorptive extraction gas chromatography-mass spectrometry (HSSE-GC/MS). The hydrolysis of p-NPG showed that β-glucosidase activity is very susceptible to low pH but induced in the presence of high ethanol content. Furthermore, UNQLp 11 was able to release the glycosilated precursor n-octyl, during MLF to a greater extent than a commercial enzyme. In conclusion, UNQLp 11 could improve the aromatic profile of the wine by the release of volatile precursors during MLF.


2013 ◽  
Vol 69 (11) ◽  
pp. 1225-1228 ◽  
Author(s):  
Sara Wyss ◽  
Irmgard A. Werner ◽  
W. Bernd Schweizer ◽  
Simon M. Ametamey ◽  
Selena Milicevic Sephton

Hydrolysis of the methyl ester (±)-threo-methyl phenidate afforded the free acid in 40% yield,viz.(±)-threo-ritalinic acid, C13H17NO2. Hydrolysis and subsequent crystallization were accomplished at pH values between 5 and 7 to yield colourless prisms which were analysed by X-ray crystallography. Crystals of (±)-threo-ritalinic acid belong to theP21/nspace group and form intermolecular hydrogen bonds. An antiperiplanar disposition of the H atoms of the (HOOC—)CH—CHpygroup (py is pyridine) was found in both the solid (diffraction analysis) and solution state (NMR analysis). It was also determined that (±)-threo-ritalinic acid conforms to the minimization of negativegauche+–gauche−interactions.


1972 ◽  
Vol 127 (1) ◽  
pp. 87-96 ◽  
Author(s):  
P. G. Bolton ◽  
A. C. R. Dean

1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F−, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined.


1993 ◽  
Vol 264 (6) ◽  
pp. C1570-C1576 ◽  
Author(s):  
J. A. Saye ◽  
N. V. Ragsdale ◽  
R. M. Carey ◽  
M. J. Peach

We have demonstrated that angiotensinogen is synthesized by 3T3-F442A cells and is hydrolyzed to angiotensins I and II (ANG I and II) by this model adipocyte system. This study was designed to determine whether ANG I is generated by renin or some other enzyme and where the formation of ANG I and/or II occurs in 3T3-F442A cells. Renin mRNA was not detected by Northern blot analysis of poly(A)(+)-selected RNA from cultures of fully differentiated adipocytes nor by the more sensitive polymerase chain reaction, implying that renin is not synthesized in this model adipocyte system. Hydrolysis of angiotensinogen to ANG I and II was demonstrated to be associated with the cell but not the media. Inhibitors, including EDTA, aimed at inactivating enzymes belonging to the serine, acid, or aspartyl proteases, and metalloproteases were ineffective in preventing the formation of either ANG I or II. Therefore the model adipocyte 3T3-F442A cell system forms ANG I and II in the absence of renin and angiotensin-converting enzyme. The unidentified enzymes responsible for peptide formation are associated with the cell itself.


Sign in / Sign up

Export Citation Format

Share Document