scholarly journals Comparison of the Adhesion Ability of Different Salmonella Enteritidis Serotypes to Materials Used in Kitchens

2006 ◽  
Vol 69 (10) ◽  
pp. 2352-2356 ◽  
Author(s):  
KELLY OLIVEIRA ◽  
TEREZA OLIVEIRA ◽  
PILAR TEIXEIRA ◽  
JOANA AZEREDO ◽  
MARIANA HENRIQUES ◽  
...  

Contamination of kitchen surfaces due to bacteria present in foodstuffs is one of the main causes of foodborne outbreaks. Salmonella infections are an important cause of foodborne disease, and Salmonella Enteritidis is the most common isolate in the past few years. In this study, the adhesion ability of four Salmonella Enteritidis isolates to different materials (polyethylene, polypropylene, and granite) used in kitchens was compared. The results indicated that the two plastic materials were generally less prone to colonization than was the granite. As surface properties of both bacteria and materials are a determinant in the adhesion process, surface hydrophobicity was determined through contact angle measurement, and the roughness of the materials was evaluated through the Ra and Rz values by a noncontact laser stylus tracing. The four Salmonella strains showed similar degrees of hydrophilicity, while the materials were hydrophobic, with granite having a very low degree of hydrophobicity (ΔGlwl = −4.7 mJ/m2). However, the different extents of adhesion could not be explained in terms of surface hydrophobicity and roughness of the materials tested. The main conclusion to be drawn is that Salmonella adhesion is strongly strain dependent, despite the similar degree of hydrophobicity displayed by all the strains assayed, and this can constitute a factor of virulence among the different serotypes.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bochun Xu ◽  
Nan Zou ◽  
Yunhao Jia ◽  
Chao Feng ◽  
Jiajia Bu ◽  
...  

Purpose The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion resistance and hydrophobicity. Design/methodology/approach The surface of the Ti6Al4V alloy was modified by laser processing and anodizing to fabricate micro-pits, nanotubes and micro-nano surface textures. Afterward, the surface morphology, hydrophobicity and polarization curve of the samples were analyzed by cold field scanning electron microscopy, contact angle measurement instruments and a multi-channel electrochemical workstation. Findings The micro-nano surface texture can enhance the hydrophobicity of the Ti6Al4V surface, which may lead to better drag reduction to ease the friction of implants in vivo. Nevertheless, no correlation existed between surface hydrophobicity and corrosion resistance; the corrosion resistance of samples with nanotubes and high-density samples with micro-nano surface texture was extremely enhanced, indicating the similar corrosion resistance of the two. Research limitations/implications The mechanism of micro-dimples on the corrosion resistance of the micro-nano surface texture was not studied. Practical implications The density of micro-pits needs to be optimized to guarantee excellent corrosion resistance in the design of the micro-nano surface texture; otherwise, it will not fulfill the requirement of surface modification. Originality/value The influence of the micro-nano surface texture on the corrosion resistance, as well as the relationship between hydrophobicity and corrosion resistance of the titanium alloy surface, were systematically investigated for the first time. These conclusions offer new knowledge.


2011 ◽  
Vol 299-300 ◽  
pp. 600-603 ◽  
Author(s):  
Li Li Xue ◽  
Ping Long ◽  
Huan Wei ◽  
Ying Liang

Hemocompatibility is a key property of biomaterials that come in contact with blood. Surface modification has shown great potential for improving the hemocompatibility of biomedical materials and devices. It has been improved that TiO2has excellent hemocompatibility. In this study, TiO2nanoparticles was added into polytetrafluorethylen (PTFE) resin in order to enhance hemocompatibility of the organic coating. The surface hydrophobicity of the coatings was characterized by contact angle measurement. Systematic evaluation of hemocompatibility, including platelet adhesion and blood clotting, proved that TiO2nanoparticles composite PTFE coating have better hemocompatibility. It is suggested that TiO2nano particles can improve hemocompatibility of organic coating due to its passive surface and chemical stability.


2001 ◽  
Vol 705 ◽  
Author(s):  
Kenneth E. Gonsalves ◽  
Wei He ◽  
David B. Poker ◽  
Nikola Batina ◽  
Lhadi Merhari

AbstractWe describe a new approach for biomaterial patterning, viz, masked ion beam lithography. Poly (methyl methacrylate) (PMMA) film was used as a model system and subjected to Ca+ and P+ ion implantations through masks. Ca+ ion implantation was performed at an energy of 85 keV with a fluence of 1×1014 ions/cm2. P+ ion implantation was done at an energy of 85 keV with fluences of 1×1015 and 1×1016 ions/cm2. Arrays of holes were generated during these processes. AFM showed that the depth of the holes is in the nanoscale region. The surface hydrophobicity of the exposed PMMA films was investigated by contact angle measurement. The results indicated that ion implantation changed the surface hydrophobicity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haruka Saito ◽  
Yuji Yamashita ◽  
Nanami Sakata ◽  
Takako Ishiga ◽  
Nanami Shiraishi ◽  
...  

Asian soybean rust (ASR) caused by Phakopsora pachyrhizi, an obligate biotrophic fungal pathogen, is the most devastating soybean production disease worldwide. Currently, timely fungicide application is the only means to control ASR in the field. We investigated cellulose nanofiber (CNF) application on ASR disease management. CNF-treated leaves showed reduced lesion number after P. pachyrhizi inoculation compared to control leaves, indicating that covering soybean leaves with CNF confers P. pachyrhizi resistance. We also demonstrated that formation of P. pachyrhizi appressoria, and also gene expression related to these formations, such as chitin synthases (CHSs), were significantly suppressed in CNF-treated soybean leaves compared to control leaves. Moreover, contact angle measurement revealed that CNF converts soybean leaf surface properties from hydrophobic to hydrophilic. These results suggest that CNF can change soybean leaf surface hydrophobicity, conferring resistance against P. pachyrhizi, based on the reduced expression of CHSs, as well as reduced formation of pre-infection structures. This is the first study to investigate CNF application to control field disease.


2018 ◽  
Vol 95 ◽  
pp. 182-188 ◽  
Author(s):  
Asier Martinez-Urrutia ◽  
Peru Fernandez de Arroiabe ◽  
Miguel Ramirez ◽  
Manex Martinez-Agirre ◽  
M. Mounir Bou-Ali

2003 ◽  
Vol 66 (11) ◽  
pp. 2070-2075 ◽  
Author(s):  
P. SIMMONDS ◽  
B. L. MOSSEL ◽  
T. INTARAPHAN ◽  
H. C. DEETH

Twenty-one strains of Bacillus (10 B. stearothermophilus, 3 B. cereus, and 8 B. licheniformis strains) were assayed for spore surface hydrophobicity on the basis of three measures: contact angle measurement (CAM), microbial adhesion to hydrocarbons (MATH), and hydrophobic interaction chromatography (HIC). On the basis of the spore surface characteristics obtained from these assays, along with data on the heat resistance of these spores in water, eight strains of Bacillus (three B. stearothermophilus, three B. cereus, and two B. licheniformis strains) either suspended in water or adhering to stainless steel were exposed to sublethal heat treatments at 90 to 110°C to determine heat resistance (D-value). Significant increases in heat resistance (ranging from 3 to 400%) were observed for the eight strains adhering to stainless steel. No significant correlation was found between these heat resistance increases and spore surface characteristics as determined by the three hydrophobicity assays. There was a significant positive correlation between the hydrophobicity data obtained by the MATH assay and those obtained by the HIC assay, but these data did not correlate with those obtained by the CAM assay.


2004 ◽  
Vol 67 (3) ◽  
pp. 456-462 ◽  
Author(s):  
SALLY C. C. FOONG ◽  
JAMES S. DICKSON

Five individual strains of Listeria monocytogenes and a mixed cocktail of all five were studied for attachment on frankfurters, ham, bologna, and roast beef relative to their cell surface characteristics. The ratio of strongly attached (sessile) L. monocytogenes cells compared with total (sessile and planktonic) attached cells on ready-to-eat meats was also determined. Because bacterial cell surfaces were characterized by net negative charge and hydrophobicity, electrostatic interaction chromatography and cationized ferritin methods were chosen to study net negative charge distribution on the bacterial cell surface, whereas hydrophobic interaction chromatography and contact angle measurement were used to examine the cell surface hydrophobicity. No differences (P > 0.05) were observed in cell surface charge or cell surface hydrophobicity among strains. Approximately 84 to 87% L. monocytogenes were found to attach strongly to ready-to-eat meats within 5 min. No differences (P > 0.05) were found among strains or among meats. Micrographs observed from scanning electron microscopy showed no differences among the strains but showed a difference in age of cells (mixed culture) in terms of surface negative charge distribution. More surface negatively charged sites were observed at 0 and 7 days and much fewer at 3 days during storage of washed, harvested cells in buffer at 4°C (aged cells under cold and nutrient deprivation), indicating a possible change in cell surface properties. Because no difference in strains was observed, the contact angle measurement study was carried out with the five-strain mixed culture. The surface hydrophobicity increased in frankfurters, decreased in roast beef, and was unchanged in ham and bologna as a result of inoculation.


Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 55 ◽  
Author(s):  
VSSL Prasad Talluri ◽  
Aiym Tleuova ◽  
Seyedmehdi Hosseini ◽  
Ondrej Vopicka

In this work, a poly(1-trimethylsilyl-1-propyne) (PTMSP) mixed-matrix membrane was fabricated for the selective removal of 1-butanol from aqueous solutions through pervaporation. Silica nanoparticles (SNPs), which were surface-modified with surfactant hexadecyltrimethylammonium bromide (CTAB), were incorporated into the structure of the membrane. The modified membrane was characterized by thermogravimetry-differential scanning calorimetry (TG-DSC), contact angle measurements, and scanning electron microscope (SEM) analysis. It was found that the surface hydrophobicity of the membrane was improved when compared to neat PTMSP by contact angle measurement. It was confirmed by SEM analysis that a uniform distribution of surface-modified SNPs throughout the PTMSP membrane was achieved. The thermogravimetric analysis detected the thermal degradation of the modified PTMSP at 370 °C, which is comparable to neat PTMSP. The pervaporation measurements showed a maximum separation factor of 126 at 63 °C for 1.5 w/w% 1-butanol in the feed. The maximum total flux of approximately 1.74 mg·cm−2·min−1 was observed with the highest inspected temperature of 63 °C and at the 1-butanol concentration in the feed 4.5 w/w%. The pervaporation transients showed that the addition of the surface-modified SNPs significantly enhanced the diffusivity of 1-butanol in the composite compared to the neat PTMSP membrane. This improvement was attributed to the influence of the well-dispersed SNPs in the PTMSP matrix, which introduced an additional path for diffusivity.


2020 ◽  
Author(s):  
Haruka Saito ◽  
Yuji Yamashita ◽  
Nanami Sakata ◽  
Takako Ishiga ◽  
Nanami Shiraishi ◽  
...  

AbstractAsian soybean rust (ASR) caused by Phakopsora pachyrhizi, an obligate biotrophic fungal pathogen, is the most devastating soybean production disease worldwide. Currently, timely fungicide application is the only means to control ASR in the field. We investigated cellulose nanofiber (CNF) application on ASR disease management. CNF-treated leaves showed reduced lesion number after P. pachyrhizi inoculation compared to control leaves, indicating that covering soybean leaves with CNF confers P. pachyrhizi resistance. We also demonstrated that formation of P. pachyrhizi pre-infection structures including germ-tubes and appressoria, and also gene expression related to these formations, such as chitin synthases (CHSs), were significantly suppressed in CNF-treated soybean leaves compared to control leaves. Moreover, contact angle measurement revealed that CNF converts soybean leaf surface properties from hydrophobic to hydrophilic. These results suggest that CNF can change soybean leaf surface hydrophobicity, conferring resistance against P. pachyrhizi, based on the reduced expression of CHSs, as well as reduced formation of pre-infection structures. This is the first study to investigate CNF application to control field disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed S. Belal ◽  
Jehan El Nady ◽  
Azza Shokry ◽  
Shaker Ebrahim ◽  
Moataz Soliman ◽  
...  

AbstractOily water contamination has been sighted as one of the most global environmental pollution. Herein, copper hydroxide nanorods layer was constructed onto cellulosic filter paper surface cured with polydopamine, Ag nanoparticles, and Cu NPs through immersion method. This work has been aimed to produce a superhydrophobic and superoleophilic cellulosic filter paper. The structure, crystalline, and morphological properties of these modified cellulosic filter paper were investigated. Scanning electron microscope images confirmed that the modified surface was rougher compared with the pristine surface. The contact angle measurement confirmed the hydrophobic nature of these modified surfaces with a water contact angle of 169.7°. The absorption capacity was 8.2 g/g for diesel oil and the separation efficiency was higher than 99%. It was noted that the flux in the case of low viscosity solvent as n-hexane was 9663.5 Lm−2 h−1, while for the viscous oil as diesel was 1452.7 Lm−2 h−1.


Sign in / Sign up

Export Citation Format

Share Document