Inhibition of Listeria innocua in Hummus by a Combination of Nisin and Citric Acid

2006 ◽  
Vol 69 (6) ◽  
pp. 1322-1327 ◽  
Author(s):  
M. AL-HOLY ◽  
H. AL-QADIRI ◽  
M. LIN ◽  
B. RASCO

The effect of nisin or citric acid or combinations of these two inhibitors on the inactivation of a cocktail of three Listeria innocua strains was investigated in a model brain heart infusion (BHI) broth and hummus (chickpea dip). In BHI broth, citric acid had a limited ability to inhibit L. innocua growth. Nisin initially reduced L. innocua concentrations by about 3 log cycles; however, L. innocua reached concentrations similar to those of the control after 5 days at 22°C. In combination, the effects of 500 IU/ml nisin and 0.2% citric acid were synergistic and resulted in complete elimination of L. innocua in the BHI broth. The inhibition of L. innocua by nisin (500 or 1,000 IU/g), citric acid (0.1, 0.2, or 0.3%), or their combinations also was evaluated in hummus. Citric acid alone did not affect L. innocua growth or the aerobic bacterial plate count. A combination of 1,000 IU/g nisin and 0.3% citric acid was somewhat effective (∼1.5-log reduction) in controlling the concentration of L. innocua and the aerobic plate count for up to 6 days. This combination also may be useful, in addition to proper hygienic practices, for minimizing the growth of the pathogen Listeria monocytogenes in hummus.

2019 ◽  
Vol 82 (2) ◽  
pp. 238-246 ◽  
Author(s):  
BALASUBRAHMANYAM KOTTAPALLI ◽  
STEPHANIE P. V. NGUYEN ◽  
TIM PEREZ ◽  
ASHLEY CUNNINGHAM

ABSTRACT Recent recalls and outbreaks due to foodborne pathogens in thermally processed low-moisture foods highlight the need for the food industry to validate their thermal process. The purpose of this study was to validate baking as an adequate lethality step in controlling Salmonella and Listeria monocytogenes during the production of peanut butter (PB)–filled pretzels and whole wheat (WW) pita chips. Two dough types, PB-filled pretzel and WW pita chip with varying water activities (0.96 to 0.98), were inoculated (target level, ∼108 to 109 CFU/g) with a multistrain cocktail of Salmonella and L. monocytogenes in separate trials and were baked at 300°F (148.9°C) and 350°F (176.6°C) for 0, 5, 10, 17, 25, and 30 min. Following baking, samples were rapidly cooled and analyzed for Salmonella and L. monocytogenes by the pour plate method. Uninoculated samples were analyzed for total viable aerobic plate count (APC) and Enterobacteriaceae counts. Water activity analysis was also performed. The experiment was replicated three times. Nonlinear regression was used to estimate the baking times required to achieve a minimum of 4- and 5-log reduction in APC, Salmonella, and L. monocytogenes. A 4- and 5-log reduction in APC was predicted following a treatment at 350°F for 3.3 and 5.6 min in WW pita chip product, respectively. Following a treatment of 350°F for 10 and 25 min, Enterobacteriaceae and APC counts were below the detection limit (<1 log CFU/g), respectively, in all of the PB-filled pretzel samples. Salmonella and L. monocytogenes counts decreased with increasing baking time regardless of the temperature used. Significant reductions (≥5-log reduction) were estimated in Salmonella and L. monocytogenes in product baked at 350°F for 15.5 and 17.5 min in WW pita chip dough and PB-filled pretzel dough, respectively. Both pathogens were below the detection limit (<1 log CFU/g) in PB-filled pretzel and WW pita chip products under baking conditions of 350°F for 25 and 30 min, respectively. This study demonstrates that PB-filled pretzel and WW pita chip products, when baked to saleable quality, will not present a public health risk from the standpoint of Salmonella or L. monocytogenes.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 414-415
Author(s):  
Yamicela Castillo-Castillo ◽  
Marina Ontiveros ◽  
Eric J Scholljegerdes ◽  
Robin Anderson ◽  
Claudio Arzola-Alvarez ◽  
...  

Abstract Silages can harbor pathogenic and antimicrobial resistant microbes which risk infection of food-producing animals. Livestock producers need effective yet environmentally friendly interventions to preserve the feed value of these fermented materials. Medium chain fatty acids such as laurate and its glycerol monoester, monolaurin, are potent inhibitors of many Gram-positive bacteria and when tested at 5 mg/mL in anaerobic cultures (n = 3/treatment) inoculated with 105 colony forming units (CFU) of Listeria monocytogenes and grown at 37oC in ½ strength Brain Heart infusion broth achieved near complete elimination of viable cells after 6 h compared to a 2.2 ± 0.1 log10 CFU/mL increase observed in controls. Culture of a tetracycline-resistant Enterococcus faecalis with 5 mg laurate/mL likewise achieved near complete elimination of viable cells (5 log10 CFU/mL) by 6 h incubation. The bactericidal effect of 5 mg monolaurin was less against E. faecalis, achieving a decrease of 1.8 ± 0.2 log10 CFU/mL and not decreased further after 24 h. When tested against air-exposed silage, pH 7.53 (4 g), mixed with 4 mL water, 5 mg laurate or monolaurin decreased viability of experimentally-inoculated L. monocytogenes (105 CFU/g silage) more (P < 0.05) than untreated controls after 24 h aerobic incubation (22oC), with viable counts being decreased 6.3 ± 0.1, 5.9 ± 0.8 and 4.5 ± 0.1 log10 CFU/g, respectively. In contrast, viable recovery of the experimentally-inoculated (105 CFU/g) tetracycline-resistant E. faecalis was reduced more (P < 0.05) than controls (decreased 0.7 ± 0.1 log10 CFU/g) after 6 h incubation when similarly tested with laurate and monolaurin (1.7 ± 0.5 and 3.0 ± 0.9 log10 CFU/g, respectively) but counts after 24 h were similar, decreasing on average 2.0 ± 0.5 log10 CFU/g). Results indicate laurate and monolaurin may be useful in killing L. monocytogenes and tetracycline-resistant E. faecalis during silage feed-out.


2004 ◽  
Vol 67 (5) ◽  
pp. 1014-1016 ◽  
Author(s):  
M. J. CHO ◽  
R. W. BUESCHER ◽  
M. JOHNSON ◽  
M. JANES

The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37° C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.


Author(s):  
Zhujun Gao ◽  
Qiao Ding ◽  
Chongtao Ge ◽  
Robert C. Baker ◽  
Rohan V. Tikekar ◽  
...  

ABSTRACT While high temperature heat treatments can efficiently reduce pathogen levels, they also affect the quality and nutritional profile of foods, as well as increase the cost of processing. The food additive butyl para-hydroxybenzoate (BPB) was investigated for its potential to synergistically enhance the thermal inactivation at mild heating temperatures (54 – 58 ºC). Four foodborne pathogenic bacteria, Cronobacter sakazakii , Salmonella enterica serotype Typhimurium, attenuated Escherichia coli O157:H7 and Listeria monocytogenes, were cultured to early stationary phase and then subjected to mild heating in a model food matrix (Brain Heart Infusion) containing low levels BPB (≤ 125 ppm). The heating temperature used with each bacterium was selected based on the temperature that would yield an approximate 1 – 2 log reduction over 15 min heating in BHI without BPB using a submerged coil apparatus. The inclusion of BPB at concentrations ≤ 125 ppm resulted in significant enhancement of thermal inactivation, achieving 5 – > 6 log reductions of the Gram-negative strains and D-values of < 100 sec. Listeria monocytogenes achieved at 3 – 4 log reduction with a similar treatment. No significant inactivation was noted in the absence of the mild heating for the same time period. This study provides an additional proof of concept that low temperature inactivation of foodborne pathogens can be realized by synergistic enhancement of thermal inactivation by food components that affect microbial cell membranes.


2009 ◽  
Vol 72 (12) ◽  
pp. 2453-2460 ◽  
Author(s):  
XUETONG FAN ◽  
BASSAM A. ANNOUS ◽  
LINDSEY A. KESKINEN ◽  
JAMES P. MATTHEIS

Whole cantaloupes either not inoculated or inoculated with Salmonella Poona were submerged in water, 180 ppm of chlorine, acidified calcium sulfate (ACS: 1.2% Safe2O-ACS50), 1,000 ppm of acidified sodium chlorite (ASC), 80 ppm of peroxyacetic acid (PAA), and a combination of ACS and PAA for 10 min. Although only ASC and the combination of ACS and PAA significantly reduced the aerobic plate count of samples taken from the surface of whole cantaloupe (compared with samples taken from cantaloupe submerged in water only), all treatments reduced yeast and mold counts on the whole cantaloupe. However, none of the treatments of whole cantaloupes consistently reduced yeast and mold counts for the samples of fresh-cut cantaloupes. The aerobic plate counts for fresh-cut cantaloupe were reduced by 1 to 2 log CFU/g by sanitization of whole fruit with ASC, ACS, and the combination of ACS and PAA. The low bacterial population on the fresh-cut fruit was maintained during 14 days of storage at 4°C. All treatments had a limited effect on the population of Salmonella, achieving no more than a 1.5-log reduction of the pathogen inoculated on the surface of the whole cantaloupes. Salmonella was nondetectable via direct plating (with a detection limit of 0.4 log CFU/g) in fresh-cut cantaloupes prepared from whole cantaloupes treated with any of the sanitizers. However, after enrichment, Salmonella often was detectable. Color, texture, soluble solids, pH, ascorbic acid, and drip loss of cut cantaloupes were not consistently affected by any of the whole-fruit treatments. Overall, treatments of whole cantaloupe with ASC, ACS, and the combination of ACS and PAA at the concentrations tested permitted a significant reduction in Salmonella and native microflora of whole and cut fruit; however, Salmonella still could be found in cut cantaloupes from all treatments.


2014 ◽  
Vol 77 (12) ◽  
pp. 2129-2132 ◽  
Author(s):  
MARK E. BERRANG ◽  
CHARLES L. HOFACRE ◽  
JOSEPH F. FRANK

Listeria monocytogenes can colonize a poultry processing plant as a resident in floor drains. Limiting growth and attachment to drain surfaces may help lessen the potential for cross-contamination of product. The objective of this study was to compare a hydrogen peroxide-peroxyacetic acid–based chemical to chitosan-arginine or heat to prevent attachment of or destroy existing L. monocytogenes on the inner surface of model floor drains. L. monocytogenes was introduced to result in about 109 planktonic and attached cells within untreated polyvinyl chloride model drain pipes. Treatments (0.13% peroxide-based sanitizer, 0.1% chitosan-arginine, or 15 s of hot water at 95 to 100°C) were applied immediately after inoculation or after 24 h of incubation. Following treatment, all pipes were incubated for an additional 24 h; planktonic and attached cells were enumerated by plate count. All treatments significantly (P < 0.05) lowered numbers of planktonic and attached cells recovered. Chitosan-arginine resulted in approximately a 6-log reduction in planktonic cells when applied prior to incubation and a 3-log reduction after the inoculum had a chance to grow. Both heat and peroxide significantly outperformed chitosan-arginine (8- to 9-log reduction) and were equally effective before and after incubation. Heat was the only treatment that eliminated planktonic L. monocytogenes. All treatments were less effective against attached cells. Chitosan-arginine provided about a 4.5-log decrease in attached cells when applied before incubation and no significant decrease when applied after growth. Like with planktonic cells, peroxide–peroxyacetic acid and heat were equally effective before or after incubation, causing decreases ranging from 7 to 8.5 log for attached L. monocytogenes. Applied at the most efficacious time, any of these techniques may lessen the potential for L. monocytogenes to remain as a long-term resident in processing plant floor drains.


2001 ◽  
Vol 64 (1) ◽  
pp. 104-107 ◽  
Author(s):  
R. G. LABBE ◽  
M. KINSLEY ◽  
J. WU

The sap of the maple sugar tree (Acer saccharum) contains 2 to 3% sucrose and is traditionally collected early in the year and concentrated by boiling to produce maple syrup. High levels of microorganisms in the sap occur during holding, leading to a darker syrup with lower economic value. We investigated the use of dissolved ozone as a method to reduce the microbial population in sap. After 40 min of ozone treatment, concentrations of up to 0.30 mg/liter were achieved but were ineffective in reducing the aerobic plate count. Three predominant colonies on nutrient agar were selected for isolation and identification from sap. These included one mucoid and one nonmucoid yeast, both identified as Candida, and Pseudomonas fluorescens. When suspended in buffer, each was readily inactivated by ozone. Addition of 3% sucrose to the buffer markedly reduced the effectiveness of ozone. With the use of an ozone generator with a larger ozone output, saturating ozone concentrations (1 mg/liter) were achieved within 5 min but were accompanied by only a 1-log reduction in aerobic plate count of maple sap. After 40 min of ozone treatment, a less than 3-log reduction occurred. The results indicate that, because of the presence of sucrose, ozone may be of limited use in reducing the microbial population in sap.


1991 ◽  
Vol 54 (1) ◽  
pp. 7-11 ◽  
Author(s):  
JOSEPH LOVETT ◽  
DAVID W. FRANCIS ◽  
JAMES T. PEELER ◽  
ROBERT M. TWEDT

Two enrichment methods that had been used as standard procedures by the U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) were quantitatively compared for their ability to isolate Listeria monocytogenes from seafoods. Cultures of a clinical sample and a seafood isolate were inoculated into raw and cooked shrimp; cultures heated at 57.8°C for 5 min were added to surimi, cooked crabmeat, and cooked shrimp. With the FDA procedure, which used enrichment intervals of 24 h, 48 h, and 7 d, KOH culture treatment and enrichment for 24 h provided no advantage for Listeria recovery. The FDA procedure isolated heated L. monocytogenes from seafoods at a lower level than the USDA method; however, the two methods isolated unheated cells equally well. The greater selectivity of the USDA procedure may offer an advantage for isolating nonheat-stressed Listeria when the aerobic plate count of the product is high.


2009 ◽  
Vol 72 (6) ◽  
pp. 1201-1208 ◽  
Author(s):  
HUA YANG ◽  
PATRICIA A. KENDALL ◽  
LYDIA MEDEIROS ◽  
JOHN N. SOFOS

Solutions of selected household products were tested for their effectiveness against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. Hydrogen peroxide (1.5 and 3%), vinegar (2.5 and 5% acetic acid), baking soda (11, 33, and 50% sodium bicarbonate), household bleach (0.0314, 0.0933, and 0.670% sodium hypochlorite), 5% acetic acid (prepared from glacial acetic acid), and 5% citric acid solutions were tested against the three pathogens individually (five-strain composites of each, 108 CFU/ml) by using a modified AOAC International suspension test at initial temperatures of 25 and 55°C for 1 and 10 min. All bleach solutions (pH 8.36 to 10.14) produced a >5-log reduction of all pathogens tested after 1 min at 25°C, whereas all baking soda solutions (pH 7.32 to 7.55) were ineffective (<1-log reduction) even after 10 min at an initial temperature of 55°C. After 1 min at 25°C, 3% hydrogen peroxide (pH 2.75) achieved a >5-log reduction of both Salmonella Typhimurium and E. coli O157:H7, whereas undiluted vinegar (pH 2.58) had a similar effect only against Salmonella Typhimurium. Compared with 1 min at 25°C, greater reductions of L. monocytogenes (P < 0.05) were obtained with all organic acid and hydrogen peroxide treatments after 10 min at an initial temperature of 55°C. The efficacies of household compounds against all tested pathogens decreased in the following order: 0.0314% sodium hypochlorite > 3% hydrogen peroxide > undiluted vinegar and 5% acetic acid > 5% citric acid > baking soda (50% sodium bicarbonate). The sensitivity of the tested pathogens to all tested household compounds followed the sequence of Salmonella Typhimurium > E. coli O157: H7 > L. monocytogenes.


1994 ◽  
Vol 57 (7) ◽  
pp. 567-570 ◽  
Author(s):  
ROBERT L. BUCHANAN ◽  
MARSHA H. GOLDEN

The effects and interactions between pH and CitriC acid concentration on the inactivation of Listeria monocytogenes was determined using a three-strain mixture. Citric acid/sodium citrate combinations were added to brain heart infusion (BHI) broth to achieve concentrations of 0.1, 0.5, 1.0 and 2.0 M in conjunction with pH values of 4, 5, 6 and 7. The media were dispensed in 20-ml portions in dilution bottles, inoculated to approximately 108 CFU/ml, and incubated at 28°C. Survivor curves were generated using a linear model incorporating a lag term, and D-values and “time to 4-D inactivation” values were calculated. The results were compared against control cultures in which the pH was modified using hydrochloric acid (HCI). The rate of inactivation was dependent on both the pH and concentration of citric acid. Low levels of citric acid were protective, particularly at pH 5 and 6. At higher concentrations, a distinct anion effect was observed as compared to the HCl controls, with inactivation rates being correlated with the completely undissociated form of the acid. Comparison of the kinetic data with earlier results with lactic and acetic acids suggests that citric acid has both protective and bactericidal activity against L. monocytogenes, which involve different modes of action.


Sign in / Sign up

Export Citation Format

Share Document