Shedding of Escherichia coli O157:H7 by Cattle Fed Diets Containing Monensin or Tylosin†

2006 ◽  
Vol 69 (9) ◽  
pp. 2075-2083 ◽  
Author(s):  
T. A. McALLISTER ◽  
S. J. BACH ◽  
K. STANFORD ◽  
T. R. CALLAWAY

Monensin and tylosin have activity against gram-positive bacteria, and it has been theorized that their effects on the intestinal environment may promote proliferation of gram-negative bacteria such as Escherichia coli. Effects of these antibiotics on the shedding of E. coli O157:H7 were studied in a feedlot environment, using 32 finishing steers. A diet containing 85% barley grain, 10% barley silage, and 5% supplement was amended with 33 ppm monensin, 11 ppm tylosin, both of these additives, or no additives (control). All steers were orally inoculated with 1010 CFU of a mixture of four strains of nalidixic acid–resistant E. coli O157:H7. Fecal (grab), oral (mouth swab) and water, water–water bowl interface, feed, and pen floor fecal pat samples were collected weekly for 12 weeks. Prevalence of E. coli O157:H7–positive fecal grab samples did not differ (P = 0.26) among treatments, nor did the rate (P = 0.81) or duration (P = 0.85) of shedding of the organism. Fecal grab samples were positive for E. coli O157:H7 more frequently (P < 0.001) than were oral swabs. More (P = 0.02) E. coli O157:H7–positive oral swabs were recovered from the tylosin group than from controls. E. coli O157:H7 was not detected in any of 47 water samples, but was present in 1 of 47 water bowl swabs, 7 of 48 feed samples, and 36 of 48 fecal pats. Pulsed-field gel electrophoresis suggested that differences existed among inoculated strains in their ability to persist in animals and in the environment. However, this study revealed no evidence that dietary inclusion of monensin or tylosin, alone or in combination, increased fecal shedding of E. coli O157:H7 or its persistence in the environment.

2010 ◽  
Vol 73 (12) ◽  
pp. 2197-2202 ◽  
Author(s):  
K. STANFORD ◽  
S. J. BACH ◽  
T. P. STEPHENS ◽  
T. A. McALLISTER

The effects of rumen protozoal populations on ruminal populations and fecal shedding of Escherichia coli O157:H7 were evaluated by using specifically faunated sheep. Nine fauna-free sheep (three animals per treatment) were inoculated with Dasytricha spp. (DAS sheep); with mixed population A (PopA) comprising Entodinium spp., Isotricha spp., Diplodinium spp., and Polyplastron spp.; or with mixed population B (PopB) comprising Entodinium spp., Isotricha spp., Dasytricha spp., and Epidinium spp.; six sheep were maintained fauna-free (FF sheep) to serve as controls. Sheep were fed barley silage–based diets, and treatment groups were housed in isolated rooms. Sheep were inoculated orally with 1010 CFU of a four-strain mixture of nalidixic acid–resistant E. coli O157:H7. Samples of ruminal fluid and feces were collected over 77 days. Polyplastron spp. were detected in only one sheep in PopA, and Dasytricha spp. were detected only once within the PopB cohort. Sheep in the DAS group were 2.03 times more likely (P < 0.001) to shed E. coli O157:H7 than were those in the other three treatments, whereas the PopB sheep were less likely (0.65; P < 0.05) to shed this bacterium. The likelihood of harboring ruminal E. coli O157:H7 also tended (P = 0.06) to be higher in DAS and was lower (P < 0.01) in FF than in other cohorts. Possibly, Dasytricha spp. had a hosting effect, and Epidinium spp. had a predatory relationship, with E. coli O157:H7. Additional study into predator-prey and hosting relationships among rumen protozoa and E. coli O157:H7 is warranted.


2013 ◽  
Vol 76 (1) ◽  
pp. 114-118 ◽  
Author(s):  
J. HALLEWELL ◽  
L. R. BARBIERI ◽  
J. E. THOMAS ◽  
K. STANFORD ◽  
T. A. McALLISTER

Feeding corn dried distillers' grain with solubles (DDGS) has been linked to increased fecal shedding of Escherichia coli O157:H7 in cattle. A study was conducted to compare the impact of three diets containing (dry matter basis) 40% corn DDGS, 40% wheat DDGS, or 20% corn and 20% wheat mixed DDGS to a standard barley grain finishing diet on fecal shedding in cattle challenged with a 1010 CFU mixture of four nalidixic acid–resistant E. coli O157:H7 strains. Rectal grab samples (n = 544) were collected over 70 days and screened for E. coli O157:H7 by direct plating and immunomagnetic bead separation. Feeding diets containing DDGS had no effect (P > 0.05) on the intensity or duration of fecal shedding of E. coli O157:H7 compared with the standard barley grain finishing diet.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2005 ◽  
Vol 68 (1) ◽  
pp. 26-33 ◽  
Author(s):  
K. STANFORD ◽  
S. J. BACH ◽  
T. H. MARX ◽  
S. JONES ◽  
J. R. HANSEN ◽  
...  

On-farm methods of monitoring Escherichia coli O157:H7 were assessed in 30 experimentally inoculated steers housed in four pens over a 12-week period and in 202,878 naturally colonized feedlot cattle housed in 1,160 pens on four commercial Alberta feedlots over a 1-year period. In the challenge study, yearling steers were experimentally inoculated with 1010 CFU of a four-strain mixture of nalidixic acid–resistant E. coli O157:H7. After inoculation, shedding of E. coli O157:H7 was monitored weekly by collecting rectal fecal samples (FEC), oral swabs (ORL), pooled fecal pats (PAT), manila ropes (ROP) orally accessed for 4 h, feed samples, water, and water bowl interface. Collection of FEC from all animals per pen provided superior isolation (P &lt; 0.01) of E. coli O157:H7 compared with other methods, although labor and animal restraint requirements for fecal sample collection were high. When one sample was collected per pen of animals, E. coli O157:H7 was more likely to be detected from the ROP than from the FEC, PAT, or ORL (P &lt; 0.001). In the commercial feedlot study, samples were limited to ROP and PAT, and E. coli O157:H7 was isolated in 18.8% of PAT and 6.8% of ROP samples. However, for animals that had been resident in the feedlot pen for at least 1 month, isolation of E. coli O157:H7 from ROP was not different from that from PAT (P = 0.35). Pens of animals on feed for &lt;30 days were six times more likely to shed E. coli O157:H7 than were animals on feed for &gt;30 days. However, change in diet did not affect shedding of the organism (P &gt; 0.23) provided that animals had acclimated to the feedlot for 1 month or longer. Findings from this study indicate the importance of introduction of mitigation strategies early in the feeding period to reduce transference and the degree to which E. coli O157:H7 is shed into the environment.


2004 ◽  
Vol 67 (4) ◽  
pp. 672-678 ◽  
Author(s):  
S. J. BACH ◽  
T. A. McALLISTER ◽  
G. J. MEARS ◽  
K. S. SCHWARTZKOPF-GENSWEIN

The effects of weaning and transport on fecal shedding of Escherichia coli and on E. coli O157:H7 were investigated using 80 Angus and 94 Charolais range steer calves blocked by breed and assigned to four treatments. The calves were or were not preconditioned before transport on commercial cattle liner to the feedlot via long (15 h) or short (3 h) hauling duration, yielding preconditioned long haul (P-L; n = 44), preconditioned short haul (P-S; n = 44), nonpreconditioned long haul (NP-L; n = 43), and nonpreconditioned short haul (NP-S; n = 43). Preconditioned calves were vaccinated and weaned 29 and 13 days, respectively, before transport. Nonpreconditioned calves were weaned 1 day before long or short hauling, penned for 24 h and hauled again for 2 h, and vaccinated on arrival at the feedlot. Fecal samples were collected from calves while on pasture, at weaning, at loading for transport, on arrival at the feedlot, twice in the first week, and on days 7, 14, 21, and 28 for enumeration of total E. coli (biotype 1) and detection of E. coli O157:H7. No calves were positive for E. coli O157:H7 before transport. Following transport, more (P &lt; 0.005) NP-L calves (6 of 43) tested positive for E. coli O157:H7 than did P-L (1 of 44), NP-S (1 of 43), or P-S (0 of 44) calves, and on days 0, 1, 7, and 21, their levels of shedding of E. coli were higher (P &lt; 0.005). The calves' susceptibility to infection from the environment (possibly the holding facilities or feedlot pens) was likely elevated by the stresses of weaning, transport, and relocation. Lack of preconditioning and long periods of transport (NP-L) increased fecal shedding of E. coli and E. coli O157:H7. Preconditioning may serve to reduce E. coli O157:H7 shedding by range calves on arrival at the feedlot.


2006 ◽  
Vol 69 (5) ◽  
pp. 1154-1158 ◽  
Author(s):  
MARGARET L. KHAITSA ◽  
MARC L. BAUER ◽  
GREGORY P. LARDY ◽  
DAWN K. DOETKOTT ◽  
REDEMPTA B. KEGODE ◽  
...  

Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157: H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P &lt; 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.


2000 ◽  
Vol 80 (4) ◽  
pp. 741-744 ◽  
Author(s):  
S. J. Buchko ◽  
R. A. Holley ◽  
W. O. Olson ◽  
V. P. J. Gannon ◽  
D. M. Veira

Cattle naturally infected with Escherichia coli O157:H7 were used to assess the effects of diet and feed withdrawal on the fecal shedding of E. coli O157:H7. Animals were fed an 80% concentrate diet (80% barley and 20% alfalfa silage), fasted for 48 h, fed a 100% forage diet (alfalfa silage), fasted for 48 h, and subsequently re-fed 100% forage (alfalfa silage). There were no differences in the numbers of animals positive for the shedding of E. coli O157:H7 when fed an 80% barley diet or an all-forage diet (P > 0.05) or during the fasting periods following each diet (P > 0.05). Upon re-feeding an all-forage diet following a 48-h fast, animals positive for E. coli O157:H7 shedding increased (P < 0.05), with 42.5% of the animals shedding the pathogen after 5 d. Re-feeding 100% forage following fasting appeared to have increased the number of animals shedding E. coli O157:H7 in their feces, which may have been influenced by diet in addition to fasting. Key words: Escherichia coli O157:H7, fasting, diet, cattle, fecal shedding


2004 ◽  
Vol 70 (9) ◽  
pp. 5336-5342 ◽  
Author(s):  
M. J. Van Baale ◽  
J. M. Sargeant ◽  
D. P. Gnad ◽  
B. M. DeBey ◽  
K. F. Lechtenberg ◽  
...  

ABSTRACT Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (1010 CFU/animal) made resistant to nalidixic acid (Nalr). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nalr E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nalr E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.


Author(s):  
Samaila Abubakar ◽  
Musa Muktari ◽  
Rejoice Atiko

The synthesis and antimicrobial application of Co (III) and Fe (III) complexes of imine functionalized N-heterocyclic carbene (Imino-NHC) ligands is reported. The ligand precursors 1-(2-[(hydroxyl-benzylidene)-amino]-ethyl)-3-R-3H-imidazol-1-ium bromide where R = pyridyl (1a) and benzyl (1b) have been reported in our previous work. The in-situ generated ligands of 1a and 1b have been successfully coordinated to CoBr2 and [FeI(Cp)(CO)2] leading to the isolation of air-stable N^C^N^O four coordinate Co(III)  complex 2 and a six-coordinate Fe(III) complex 3. The synthesised complexes were both found to be NMR inactive hence were characterize using FTIR and LRMS. The complexes were screened for antimicrobial activities against four gram-negative bacteria Escherichia Coli (E-coli), Shigella, Klebsiella pneumoniae (K. Pneumoniae) and Salmonella typhi (S. typhi) and a gram positive bacteria Staphylocossus aureus (S. aureus). The antimicrobial test was conducted using disc diffusion methods and based on the concentrations of 100, 200, 300, 400 and 500 µg/ mL, significant activities were recorded for both cobalt and the iron complexes.


2003 ◽  
Vol 66 (5) ◽  
pp. 748-754 ◽  
Author(s):  
M. M. BRASHEARS ◽  
M. L. GALYEAN ◽  
G. H. LONERAGAN ◽  
J. E. MANN ◽  
K. KILLINGER-MANN

Fecal shedding of Escherichia coli O157:H7, the prevalence of Escherichia coli O157:H7 in pens and on carcasses and hides, and cattle performance as a result of daily dietary supplementation with Lactobacillus-based direct-fed microbials (DFMs) were evaluated in a feeding trial involving 180 beef steers. Steers were evaluated for shedding of E. coli O157:H7 by an immunomagnetic separation technique on arrival at the feedlot, just before treatment with the DFMs, and every 14 days thereafter until slaughter. Composite pen fecal samples were collected every 14 days (alternating weeks with animal testing), and prevalence on hides and carcasses at slaughter was also evaluated. Feedlot performance (body weight gain and feed intake) was measured for the period during which the DFMs were fed. Gain efficiency was calculated as the ratio of weight gain to feed intake. Lactobacillus acidophilus NPC 747 decreased (P &lt; 0.01) the shedding of E. coli O157:H7 in the feces of individual cattle during the feeding period. E. coli O157:H7 was approximately twice as likely to be detected in control animal samples as in samples from animals receiving L. acidophilus NPC 747. In addition, DFM supplementation decreased (P &lt; 0.05) the number of E. coli O157:H7–positive hide samples at harvest and the number of pens testing positive for the pathogen. Body weight gains (on a live or carcass basis) and feed intakes during the DFM supplementation period did not differ among treatments. Gain efficiencies on a live-weight basis did not differ among treatments, but carcass-based gain/feed ratios tended (P &lt; 0.06) to be better for animals receiving the two DFM treatments than for control animals. The results of this study suggest that the feeding of a Lactobacillus-based DFM to cattle will decrease, but not eliminate, fecal shedding of E. coli O157:H7, as well as contamination on hides, without detrimental effects on performance.


Sign in / Sign up

Export Citation Format

Share Document