Applying the Food Safety Objective and Related Standards to Thermal Inactivation of Salmonella in Poultry Meat

2007 ◽  
Vol 70 (9) ◽  
pp. 2036-2044 ◽  
Author(s):  
JEANNE-MARIE MEMBRÉ ◽  
JOHN BASSETT ◽  
LEON G. M. GORRIS

The objective of this study was to investigate the practicality of designing a heat treatment process in a food manufacturing operation for a product governed by a Food Safety Objective (FSO). Salmonella in cooked poultry meat was taken as the working example. Although there is no FSO for this product in current legislation, this may change in the (near) future. Four different process design calculations were explored by means of deterministic and probabilistic approaches to mathematical data handling and modeling. It was found that the probabilistic approach was a more objective, transparent, and quantifiable approach to establish the stringency of food safety management systems. It also allowed the introduction of specific prevalence rates. The key input analyzed in this study was the minimum time required for the heat treatment at a fixed temperature to produce a product that complied with the criterion for product safety, i.e., the FSO. By means of the four alternative process design calculations, the minimum time requirement at 70°C was established and ranged from 0.26 to 0.43 min. This is comparable to the U.S. regulation recommendations and significantly less than that of 2 min at 70°C used, for instance, in the United Kingdom regulation concerning vegetative microorganisms in ready-to-eat foods. However, the objective of this study was not to challenge existing regulations but to provide an illustration of how an FSO established by a competent authority can guide decisions on safe product and process designs in practical operation; it hopefully contributes to the collaborative work between regulators, academia, and industries that need to continue learning and gaining experience from each other in order to translate risk-based concepts such as the FSO into everyday operational practice.

2006 ◽  
Vol 69 (1) ◽  
pp. 118-129 ◽  
Author(s):  
J.-M. MEMBRÉ ◽  
A. AMÉZQUITA ◽  
J. BASSETT ◽  
P. GIAVEDONI ◽  
C. de W. BLACKBURN ◽  
...  

The survival of spore-forming bacteria is linked to the safety and stability of refrigerated processed foods of extended durability (REPFEDs). A probabilistic modeling approach was used to assess the prevalence and concentration of Bacillus cereus spores surviving heat treatment for a semiliquid chilled food product. This product received heat treatment to inactivate nonproteolytic Clostridium botulinum during manufacture and was designed to be kept at refrigerator temperature postmanufacture. As key inputs for the modeling, the assessment took into consideration the following factors: (i) contamination frequency (prevalence) and level (concentration) of both psychrotrophic and mesophilic strains of B. cereus, (ii) heat resistance of both types (expressed as decimal reduction times at 90°C), and (iii) intrapouch variability of thermal kinetics during heat processing (expressed as the time spent at 90°C). These three inputs were established as statistical distributions using expert opinion, literature data, and specific modeling, respectively. They were analyzed in a probabilistic model in which the outputs, expressed as distributions as well, were the proportion of the contaminated pouches (the likely prevalence) and the number of spores in the contaminated pouches (the likely concentration). The prevalence after thermal processing was estimated to be 11 and 49% for psychrotrophic and mesophilic strains, respectively. In the positive pouches, the bacterial concentration (considering psychrotrophic and mesophilic strains combined) was estimated to be 30 CFU/g (95th percentile). Such a probabilistic approach seems promising to help in (i) optimizing heat processes, (ii) identifying which key factor(s) to control, and (iii) providing information for subsequent assessment of B. cereus resuscitation and growth.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1610
Author(s):  
Wiesław Przybylski ◽  
Danuta Jaworska ◽  
Katarzyna Kajak-Siemaszko ◽  
Piotr Sałek ◽  
Kacper Pakuła

An increase in the consumption of poultry meat has been observed due to its availability, nutritional value, and delicate flavor. These characteristics make it possible to prepare, with the use of spices and other additives, many different dishes and products for increasingly demanding consumers. The sous-vide technique is increasingly being used to give new sensory attributes to dishes in gastronomy. The study aimed to assess the impact of the heat treatment method, i.e., the sous-vide method, as compared to traditional cooking, on the sensory quality of poultry meat, as well as the efficiency of the process with regard to technological quality. The cooking yield with the sous-vide method of processing poultry meat was higher than with the traditional method of cooking in water (88.5% vs. 71.0%, respectively). The meat was also found to be redder (a* = 254 vs. 074) and less yellow (b* = 1512 vs. 1649), as well as more tender. The sensory quality of chicken breast meat obtained by the sous-vide method was higher in terms of attributes such as color tone, tenderness, juiciness, and overall quality. At the same time, it was lower in terms of the odor of cooked meat and the flavor of cooked meat as compared to meat subjected to traditional cooking.


2005 ◽  
Vol 32 (9) ◽  
pp. 839
Author(s):  
Rui Zhou ◽  
Lailiang Cheng

Apple leaf ADP-glucose pyrophosphorylase was purified 1436-fold to apparent homogeneity with a specific activity of 58.9 units mg–1. The enzyme was activated by 3-phosphoglycerate (PGA) and inhibited by inorganic phosphate (Pi) in the ADPG synthesis direction. In the pyrophosphorolytic direction, however, high concentrations of PGA (> 2.5 mm) inhibited the enzyme activity. The enzyme was resistant to thermal inactivation with a T0.5 (temperature at which 50% of the enzyme activity is lost after 5 min incubation) of 52°C. Incubation with 2 mm PGA or 2 mm Pi increased T0.5 to 68°C. Incubation with 2 mm dithiothreitol (DTT) decreased T0.5 to 42°C, whereas inclusion of 2 mm PGA in the DTT incubation maintained T0.5 at 52°C. DTT-induced decrease in thermal stability was accompanied by monomerisation of the small subunits. Presence of PGA in the DTT incubation did not alter the monomerisation of the small subunits of the enzyme induced by DTT. These findings indicate that binding of PGA renders apple leaf AGPase with a conformation that is not only more efficient in catalysis but also more stable to heat treatment. The physiological significance of the protective effect of PGA on thermal inactivation of AGPase is discussed.


2015 ◽  
Vol 78 (12) ◽  
pp. 2126-2135 ◽  
Author(s):  
ALEXANDRA CALLE ◽  
ANNA C. S. PORTO-FETT ◽  
BRADLEY A. SHOYER ◽  
JOHN B. LUCHANSKY ◽  
HARSHAVARDHAN THIPPAREDDI

Boneless beef rib eye roasts were surface inoculated on the fat side with ca. 5.7 log CFU/g of a five-strain cocktail of Salmonella for subsequent searing, cooking, and warm holding using preparation methods practiced by restaurants surveyed in a medium-size Midwestern city. A portion of the inoculated roasts was then passed once through a mechanical blade tenderizer. For both intact and nonintact roasts, searing for 15 min at 260°C resulted in reductions in Salmonella populations of ca. 0.3 to 1.3 log CFU/g. For intact (nontenderized) rib eye roasts, cooking to internal temperatures of 37.8 or 48.9°C resulted in additional reductions of ca. 3.4 log CFU/g. For tenderized (nonintact) rib eye roasts, cooking to internal temperatures of 37.8 or 48.9°C resulted in additional reductions of ca. 3.1 or 3.4 log CFU/g, respectively. Pathogen populations remained relatively unchanged for intact roasts cooked to 37.8 or 48.9°C and for nonintact roasts cooked to 48.9°C when held at 60.0°C for up to 8 h. In contrast, pathogen populations increased ca. 2.0 log CFU/g in nonintact rib eye cooked to 37.8°C when held at 60.0°C for 8 h. Thus, cooking at low temperatures and extended holding at relatively low temperatures as evaluated herein may pose a food safety risk to consumers in terms of inadequate lethality and/or subsequent outgrowth of Salmonella, especially if nonintact rib eye is used in the preparation of prime rib, if on occasion appreciable populations of Salmonella are present in or on the meat, and/or if the meat is not cooked adequately throughout.


2021 ◽  
Vol 410 ◽  
pp. 306-312
Author(s):  
Oleg V. Slautin ◽  
Dmitriy V. Pronichev ◽  
Evgeniy V. Kuz’min

The influence of ultrasound on the main regularities of the formation and growth of the diffusion zone at the interlayer boundary of an explosion-welded layered composite material of Al-Cu systems is investigated. It is proved that the effect of ultrasound contributes to the reduction of the latent period of the nucleation of intermetallic phases at the interlayer boundary, lowers the temperature of the beginning of the eutectic transformation (by about 10 ° C), but at the same time does not affect the phase composition of the diffusion zone as a result of homogeneous reactions at the boundary of contact of solids. It has been established that the thickness of the diffusion zone, with the duration of the supplied acoustic vibrations, ensures the absence of cracks in the diffusion zone, leading to delamination of the material, increases by 30-40% at a fixed temperature of intense diffusion.


2018 ◽  
Vol 196 ◽  
pp. 01058 ◽  
Author(s):  
Marek Wyjadłowski ◽  
Irena Bagińska ◽  
Jakub Reiner

The modern recognition of subsoil with the use of CPTu static probes allows to obtain detailed information necessary for the designing. Registered basic two quantities, i.e. cone resistance qc and friction on the sleeve fs, often become direct data, which allow to estimate bearing capacity of the base and the side surface of the pile. Direct methods use similarity of the pile work and piezo-cone work during the examination. An important design stage is the appropriate development of measurement data prior to the commencement of the procedure of determining the pile bearing capacity. Algorithms generated on the basis of empirical experiments are often applied with the simultaneous use of test loads. The probabilistic approach is also significant, because it enables objective assessment of the reliability level of performed design calculations. This work contains an analysis of the impact on the estimated bearing capacity and reliability of a pile of variable random depth of the pile base. It also includes the determination of probabilities of obtaining the assumed safety index for the designed solution at random foundation depth.


2021 ◽  
Vol 9 (04) ◽  
pp. 304-313
Author(s):  
Jocelyn Constant Yapi ◽  
◽  
Jean Bedel Fagbohoun ◽  
Zranseu Ange Benedicte Deffan ◽  
Elvis Gbocho Serge Ekissi ◽  
...  

Peroxidase (POD) associated with the browning of fresh-cut fruits and vegetableswas extracted from purple skin eggplant(Solanum melongena L.) and characterised using reliable spectrophotometric methods. Maximal POD activity was found at 35 °C and pH 6.0 with guaiacol as the substrate. The enzyme was stable at his optimal temperature (35 °C) and hisat pH stability was in the range of 5.6 - 6.6.Peroxidase retained its full activity in the presence of ion K+, Cu2+, Na+, Pb2+ and Ba2+ but were inhibited strongly by the ion Fe2+ and Mg2+ and the reducing agents as sodium thiosulfateand ascorbic acid. Effect of heattreatment on eggplant peroxidase showed that D-values decreased with increasing temperature, indicating faster peroxidase inactivation at higher temperatures.At 60 °C, the D-values ranged from 20.42 to 54.24 min. Hence, heat treatment at 60 °C for 30 min reduced browning of eggplant fruit.These data can be used to predict prevention of browning in the purple skin eggplantby thermal inactivation and the use of chimical agents onthe enzyme.


Author(s):  
Jelena VRANEŠEVIĆ́ ◽  
Suzana VIDAKOVIĆ́ ◽  
Slobodan KNEŽEVIĆ́ ◽  
Miloš PELIĆ́ ◽  
Zoran RUŽIĆ́ ◽  
...  

International trade requires food safety guarantees based on specialized hygiene standards, transparency procedures, and programs. Meat, because of its high water content and nutrition, can be an ideal medium for microorganism growth and multiplication. Salmonella, as one of the most common pathogens that can be transmitted from animals to humans, causes major public health problems worldwide. Although mortality is low, the disease has important social and economic consequences. Based on governmental regulation, Serbia runs an active, official control of Salmonella in meat. From January to December 2017, 193 samples of imported pork, beef, lamb, kid, and poultry meat were analyzed for the presence of Salmonella spp. Only one (0.52%) of all analyzed samples was positive to Salmonella spp. The positive sample was frozen chicken drumsticks together with thighs originated from Poland, which makes 6.67% of the total examined poultry meat samples. Infected poultry is one of the most important reservoirs of Salmonella that are transmitted to humans through the food chain. The identity of the isolated strain was biochemically and serologically confirmed to be Salmonella Infantis. This pathogen is in the 4th place of most common Salmonella serovar among human isolates in Europe and the most common serovar isolated from poultry meat. In order to decrease the prevalence of Salmonella spp. it is necessary to maintain all the food safety standards through the whole food chain, from farm to fork.


2017 ◽  
Vol 80 (9) ◽  
pp. 1422-1428 ◽  
Author(s):  
Amie-Marie Jones-Ibarra ◽  
Gary R. Acuff ◽  
Christine Z. Alvarado ◽  
T. Matthew Taylor

ABSTRACT Recent outbreaks of human disease following contact with companion animal foods cross-contaminated with enteric pathogens, such as Salmonella enterica, have resulted in increased concern regarding the microbiological safety of animal foods. Additionally, the U.S. Food and Drug Administration Food Safety Modernization Act and its implementing rules have stipulated the implementation of current good manufacturing practices and food safety preventive controls for livestock and companion animal foods. Animal foods and feeds are sometimes formulated to include thermally rendered animal by-product meals. The objective of this research was to determine the thermal inactivation of S. enterica in poultry offal during rendering at differing temperatures. Raw poultry offal was obtained from a commercial renderer and inoculated with a mixture of Salmonella serovars Senftenberg, Enteritidis, and Gallinarum (an avian pathogen) prior to being subjected to heating at 150, 155, or 160°F (65.5, 68.3, or 71.1°C) for up to 15 min. Following heat application, surviving Salmonella bacteria were enumerated. Mean D-values for the Salmonella cocktail at 150, 155, and 160°F were 0.254 ± 0.045, 0.172 ± 0.012, and 0.086 ± 0.004 min, respectively, indicative of increasing susceptibility to increased application of heat during processing. The mean thermal process constant (z-value) was 21.948 ± 3.87°F. Results indicate that a 7.0-log-cycle inactivation of Salmonella may be obtained from the cumulative lethality encountered during the heating come-up period and subsequent rendering of raw poultry offal at temperatures not less than 150°F. Current poultry rendering procedures are anticipated to be effective for achieving necessary pathogen control when completed under sanitary conditions.


1992 ◽  
Vol 55 (7) ◽  
pp. 492-496 ◽  
Author(s):  
I-PING D. HUANG ◽  
AHMED E. YOUSEF ◽  
ELMER H. MARTH ◽  
M. EILEEN MATTHEWS

Heat resistance of Listeria monocytogenes strains V7 and Scott A in chicken gravy and changes in heat resistance during refrigerated storage were studied. After chicken gravy was made, it was cooled to 40°C, inoculated with 105 CFU L. monocytogenes per ml of gravy, and then stored at 7°C for 10 d. Gravy was heated at 50, 55, 60, and 65°C immediately after inoculation and after 1, 3, 5, and 10 d of refrigerated storage. The D values for strains Scott A and V7 in gravy heated at 50°C at day 0 were 119 and 195 min and at day 10 they were 115 and 119 min, respectively, whereas at 65°C comparable values at day 0 were 0.48 and 0.19 min and at day 10 they were 0.014 and 0.007 min. Heat resistance (expressed as D values) was greater at day 0 than at the end of refrigerated storage. The z values ranged from 3.41 to 6.10°C and were highest at the early stages of chill storage and then decreased at the later stages. Strain V7 was more heat resistant than Scott A at 50°C. Strain Scott A always had a higher z value than did strain V7 at the same storage interval. A heat treatment greater than the 4-D process recommended by the U.S. Department of Agriculture was required to inactivate the large numbers of L. monocytogenes that developed in chicken gravy during refrigerated storage.


Sign in / Sign up

Export Citation Format

Share Document