Fate of Escherichia coli O157:H7 in the Presence of Indigenous Microorganisms on Commercially Packaged Baby Spinach, as Impacted by Storage Temperature and Time†

2009 ◽  
Vol 72 (10) ◽  
pp. 2038-2045 ◽  
Author(s):  
YAGUANG LUO ◽  
QIANG HE ◽  
JAMES L. McEVOY ◽  
WILLIAM S. CONWAY

This study investigated the effect of storage temperature and time on the survival and growth of Escherichia coli O157:H7, the growth of indigenous microorganisms, and the changes in product quality of packaged baby spinach. Commercial packages of spinach within 2 days of processing were cut open at one end, sprayed with fine mists of E. coli O157:H7 inoculum, resealed, and then stored at 1, 5, 8, and 12°C for 12 days until their labeled best-if-used-by dates. Microbial enumeration and product quality evaluation were conducted on day(s) 0, 3, 6, 9, and 12 postinoculation. Spinach held at 12°C supported significant (P < 0.001) E. coli O157:H7 growth, with a 1.0-log CFU/g increase within 3 days postinoculation, which was followed by additional growth during continued storage. E. coli O157:H7 grew slowly when held at 8°C, with a significant (P < 0.01) level of growth reached after 6 days of storage. However, on products held at 1 and 5°C, E. coli O157:H7 populations declined significantly (P < 0.01 and P < 0.001, respectively) within 3 days of storage. Aerobic mesophilic bacteria, psychrotrophic bacteria, and yeast and mold populations increased significantly at all storage temperatures, with more growth on products held at elevated temperatures. Product quality scores remained high within the first 6 days of storage, with a sharp decline noted on samples held at 12°C on day 9. Results suggest that E. coli O157:H7 can grow significantly on commercially packaged spinach held at 8°C or above before significant product quality deterioration occurs.

2015 ◽  
Vol 78 (7) ◽  
pp. 1288-1295 ◽  
Author(s):  
DIKE O. UKUKU ◽  
LIHAN HUANG ◽  
CHRISTOPHER SOMMERS

For health reasons, people are consuming fresh-cut fruits with or without minimal processing and, thereby, exposing themselves to the risk of foodborne illness if such fruits are contaminated with bacterial pathogens. This study investigated survival and growth parameters of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and aerobic mesophilic bacteria transferred from cantaloupe rind surfaces to fresh-cut pieces during fresh-cut preparation. All human bacterial pathogens inoculated on cantaloupe rind surfaces averaged ~4.8 log CFU/cm2, and the populations transferred to fresh-cut pieces before washing treatments ranged from 3 to 3.5 log CFU/g for all pathogens. A nisin-based sanitizer developed in our laboratory and chlorinated water at 1,000 mg/liter were evaluated for effectiveness in minimizing transfer of bacterial populations from cantaloupe rind surface to fresh-cut pieces. Inoculated and uninoculated cantaloupes were washed for 5 min before fresh-cut preparation and storage of fresh-cut pieces at 5 and 10°C for 15 days and at 22°C for 24 h. In fresh-cut pieces from cantaloupe washed with chlorinated water, only Salmonella was found (0.9 log CFU/g), whereas E. coli O157:H7 and L. monocytogenes were positive only by enrichment. The nisin-based sanitizer prevented transfer of human bacteria from melon rind surfaces to fresh-cut pieces, and the populations in fresh-cut pieces were below detection even by enrichment. Storage temperature affected survival and the growth rate for each type of bacteria on fresh-cut cantaloupe. Specific growth rates of E. coli O157:H7, Salmonella, and L. monocytogenes in fresh-cut pieces were similar, whereas the aerobic mesophilic bacteria grew 60 to 80% faster and had shorter lag phases.


2004 ◽  
Vol 67 (7) ◽  
pp. 1377-1383 ◽  
Author(s):  
S. M. L. STEVENSON ◽  
S. R. COOK ◽  
S. J. BACH ◽  
T. A. McALLISTER

To evaluate the potential of using electrolyzed oxidizing (EO) water for controlling Escherichia coli O157:H7 in water for livestock, the effects of water source, electrolyte concentration, dilution, storage conditions, and bacterial or fecal load on the oxidative reduction potential (ORP) and bactericidal activity of EO water were investigated. Anode and combined (7:3 anode:cathode, vol/vol) EO waters reduced the pH and increased the ORP of deionized water, whereas cathode EO water increased pH and lowered ORP. Minimum concentrations (vol/vol) of anode and combined EO waters required to kill 104 CFU/ml planktonic suspensions of E. coli O157:H7 strain H4420 were 0.5 and 2.0%, respectively. Cathode EO water did not inhibit H4420 at concentrations up to 16% (vol/vol). Higher concentrations of anode or combined EO water were required to elevate the ORP of irrigation or chlorinated tap water compared with that of deionized water. Addition of feces to EO water products (0.5% anode or 2.0% combined, vol/vol) significantly reduced (P < 0.001) their ORP values to <700 mV in all water types. A relationship between ORP and bactericidal activity of EO water was observed. The dilute EO waters retained the capacity to eliminate a 104 CFU/ml inoculation of E. coli O157:H7 H4420 for at least 70 h regardless of exposure to UV light or storage temperature (4 versus 24°C). At 95 h and beyond, UV exposure reduced ORP, significantly more so (P < 0.05) in open than in closed containers. Bactericidal activity of EO products (anode or combined) was lost in samples in which ORP value had fallen to ≤848 mV. When stored in the dark, the diluted EO waters retained an ORP of >848 mV and bactericidal efficacy for at least 125 h; with refrigeration (4°C), these conditions were retained for at least 180 h. Results suggest that EO water may be an effective means by which to control E. coli O157:H7 in livestock water with low organic matter content.


1995 ◽  
Vol 58 (1) ◽  
pp. 13-18 ◽  
Author(s):  
ERROL V. RAGHUBEER ◽  
JIM S. KE ◽  
MICHAEL L. CAMPBELL ◽  
RICHARD S. MEYER

Commercial mayonnaise and refrigerated ranch salad dressing were inoculated at two levels with two strains of Escherichia coli O157:H7, a non-pathogenic E. coli, and the non-fecal coliform Enterobacter aerogenes. Results showed that at the high inoculation level (>106 colony forming units [CFU]/g) in mayonnaise stored at room temperature (ca. 22°C) both strains of O157:H7 were undetected at 96 h. At the high inoculation level, all strains of coliform bacteria tested survived longer in salad dressing stored at 4°C than in mayonnaise stored at 22°C. The O157:H7 strains were still present at low levels after 17 days. The survival time in the low-level inoculum (104CFU/g) study decreased, but the survival pattern in the two products was similar to that observed in the high-level inoculum study. Slight differences in survival among strains were observed. The greater antimicrobial effect of mayonnaise may be attributable to differences in pH, water activity (aw), nutrients, storage temperature, and the presence of lysozyme in the whole eggs used in the production of commercial mayonnaise. Coliform bacteria survived longer in refrigerated salad dressing than in mayonnaise particularly at the high-level inoculum. Both mayonnaise (pH 3.91) and salad dressing (pH 4.51) did not support the growth of any of the microorganisms even though survival was observed.


2005 ◽  
Vol 68 (9) ◽  
pp. 1895-1899 ◽  
Author(s):  
MANOJ KUMAR MOHAN NAIR ◽  
HANEM ABOUELEZZ ◽  
THOMAS HOAGLAND ◽  
KUMAR VENKITANARAYANAN

The antibacterial effect of low concentrations of monocaprylin on Escherichia coli O157:H7 in apple juice was investigated. Apple juice alone (control) or containing 2.5 mM (0.055%) or 5 mM monocaprylin was inoculated with a five-strain mixture of E. coli O157:H7 at ~6.0 log CFU/ml. The juice samples were stored at 23 or 4°C for 14 or 21 days, respectively, and the population of E. coli O157:H7 was determined on tryptic soy agar plates supplemented with 0.6% yeast extract. At both storage temperatures, the population of E. coli O157:H7 in monocaprylin-supplemented juice samples was significantly lower (P < 0.05) than that in the control samples. The concentration of monocaprylin and the storage temperature had a significant effect on the inactivation of E. coli O157:H7 in apple juice. Monocaprylin at 5 mM was significantly more effective than 2.5 mM monocaprylin for killing E. coli O157:H7 in apple juice. Inactivation of E. coli O157:H7 by monocaprylin was more pronounced in juice stored at 23°C than in the refrigerated samples. Results of this study indicated that monocaprylin is effective for killing E. coli O157:H7 in apple juice, but detailed sensory studies are needed to determine the organoleptic properties of apple juice containing monocaprylin.


2009 ◽  
Vol 72 (7) ◽  
pp. 1560-1568 ◽  
Author(s):  
HELGA J. DOERING ◽  
MARK A. HARRISON ◽  
RUTH A. MORROW ◽  
WILLIAM C. HURST ◽  
WILLIAM L. KERR

Lettuce and spinach inoculated with Escherichia coli O157:H7 were processed and handled in ways that might occur in commercial situations, including variations in holding times before and after product cooling, transportation conditions and temperatures, wash treatments, and product storage temperatures and times. Populations of background microflora and E. coli O157:H7 were enumerated after each step in the system. Data analysis was done to predict response variables with a combination of independent categorical variables. Field temperature, time before cooling, and wash treatment significantly affected E. coli O157:H7 populations on both products. The lowest populations of E. coli O157:H7 were encountered when precool time was minimal, lettuce was washed with chlorine, and storage temperature was 4°C. For lettuce, field and transportation temperature were not important once the storage period started, whereas after 2 days E. coli O157:H7 populations on packaged baby spinach were not affected by field temperature. On chopped iceberg lettuce and whole leaf spinach that was packaged and stored at 4°C, E. coli O157:H7 contamination could still be detected after typical handling practices, although populations decreased from initial levels in many cases by at least 1.5 log units. In abusive cases, where populations increased, the product quality quickly deteriorated. Although E. coli O157:H7 levels decreased on products handled and stored under recommended conditions, survivors persisted. This study highlights practices that may or may not affect the populations of E. coli O157:H7 on the final product.


2018 ◽  
Vol 81 (8) ◽  
pp. 1227-1235 ◽  
Author(s):  
MINGMING GUO ◽  
TONY Z. JIN ◽  
JOSHUA B. GURTLER ◽  
XUETONG FAN ◽  
MADHAV P. YADAV

ABSTRACT Antimicrobial washing (AW), antimicrobial coating (AC), and a combination of washing followed by coating (AW+AC) were evaluated for their ability to inactivate artificially inoculated foodborne pathogens and native microbiota on strawberries stored at 4°C. Strawberries were inoculated with a six-strain composite of Escherichia coli O157:H7 and Salmonella; treated by AW, AC, or AW+AC; and stored at 4°C for 3 weeks. The washing solution contained 90 ppm of peracetic acid, and the coating solution consisted of chitosan (1%, w/v), allyl isothiocyanate (1%, v/v), and corn-bio fiber gum (5%, w/v). The effectiveness of the antimicrobial treatments against E. coli O157:H7 and Salmonella pathogens and native microflora on strawberries and their impact on fruit quality (appearance, weight loss, color, and firmness) were determined. By the end of storage, pathogen populations on strawberries were 2.5 (AW+AC), 2.9 (AC), 3.8 (AW), and 4.2 log CFU for the positive (untreated) control. AW+AC treatments also inactivated the greatest population of native microflora, followed by the AC treatment alone. AW+AC treatments showed additional antimicrobial effectiveness against these two pathogens and native microflora. Both AW+AC and AC treatments preserved the color, texture, and appearance of strawberries throughout storage. The coating treatments (AW+AC and AC alone) further reduced the loss of moisture throughout storage. The AW treatment was the least effective in reducing populations of pathogens and native microflora and in maintaining the quality of strawberries throughout storage. This study demonstrates a method to improve the microbiological safety, shelf life, and quality of strawberries.


2003 ◽  
Vol 66 (4) ◽  
pp. 549-558 ◽  
Author(s):  
SARAH L. HOLLIDAY ◽  
LARRY R. BEUCHAT

A study was conducted to characterize the survival and inactivation kinetics of a five-serotype mixture of Salmonella (6.23 to 6.55 log10 CFU per 3.5-ml or 4-g sample), a five-strain mixture of Escherichia coli O157:H7 (5.36 to 6.14 log10 CFU per 3.5-ml or 4-g sample), and a six-strain mixture of Listeria monocytogenes (5.91 to 6.18 log10 CFU per 3.5-ml or 4-g sample) inoculated into seven yellow fat spreads (one margarine, one butter-margarine blend, and five dairy and nondairy spreads and toppings) after formulation and processing and stored at 4.4, 10, and 21°C for up to 94 days. Neither Salmonella nor E. coli O157:H7 grew in any of the test products. The time required for the elimination of each pathogen depended on the product and the storage temperature. Death was more rapid at 21°C than at 4.4 or 10°C. Depending on the product, the time required for the elimination of viable cells at 21°C ranged from 5 to 7 days to >94 days for Salmonella, from 3 to 5 days to 28 to 42 days for E. coli O157:H7, and from 10 to 14 days to >94 days for L. monocytogenes. Death was most rapid in a water-continuous spray product (pH 3.66, 4.12% salt) and least rapid in a butter-margarine blend (pH 6.66, 1.88% salt). E. coli O157:H7 died more rapidly than did Salmonella or L. monocytogenes regardless of storage temperature. Salmonella survived longer in high-fat (≥61%) products than in products with lower fat contents. The inhibition of growth is attributed to factors such as acidic pH, salt content, the presence of preservatives, emulsion characteristics, and nutrient deprivation. L. monocytogenes did not grow in six of the test products, but its population increased between 42 and 63 days in a butter-margarine blend stored at 10°C and between 3 and 7 days when the blend was stored at 21°C. On the basis of the experimental parameters examined in this study, traditional margarine and spreads not containing butter are not “potentially hazardous foods” in that they do not support the growth of Salmonella, E. coli O157:H7, or L. monocytogenes.


2012 ◽  
Vol 75 (10) ◽  
pp. 1743-1750 ◽  
Author(s):  
ANDREA KROJ ◽  
HERBERT SCHMIDT

Enterohemorrhagic Escherichia coli O157:H7 strains are important foodborne pathogens that are often transmitted to humans by the ingestion of raw or undercooked meat of bovine origin. To investigate adaptation of this pathogen during persistence and growth in ground meat, we established an in vivo expression technology model to identify genes that are expressed during growth in this food matrix under elevated temperatures (42°C). To improve on the antibiotic-based selection method, we constructed the promoter trap vector pAK-1, containing a promoterless kanamycin resistance gene. A genomic library of E. coli O157:H7 strain EDL933 was constructed in pAK-1 and used for promoter selection in ground meat. The 20 in vivo expressed genes identified were associated with transport processes, metabolism, macromolecule synthesis, and stress response. For most of the identified genes, only hypothetical functions could be assigned. The results of our study provide the first insights into the complex response of E. coli O157:H7 to a ground meat environment under elevated temperatures and establish a suitable vector for promoter studies or selection of in vivo induced promoters in foods such as ground meat.


1996 ◽  
Vol 59 (3) ◽  
pp. 230-237 ◽  
Author(s):  
TIMOTHY C. JACKSON ◽  
MARGARET D. HARDIN ◽  
GARY R. ACUFF

Stationary-phase cultures of Escherichia coli O157:H7 were inoculated into tryptic soy broth, sealed in vials, and stored at −18°C for 1, 8, and 15 days, or 3 or 15°C for 3, 6, and 9 h. Thermal resistance was determined at 55°C. Each storage treatment was repeated with additional holding at 23 or 30°C for 1, 2, 3, or 4 h prior to heating to simulate potential temperature abuse during handling. Cultures under treatments enabling the growth of E. coli O157:H7 were generally more heat sensitive than those held at temperatures which restricted growth or enabled growth to stationary phase. Cultures stored frozen (−18°C) without holding at elevated temperatures had greater heat resistance than those stored under refrigeration (3°C) or at 15°C. Subsequent holding of frozen cultures at 23 or 30°C resulted in a decrease in heat resistance. To determine whether these responses would be observed under typical commercial preparation procedures, ground beef patties were inoculated with E. coli O157:H7 and stored at 3 or 15°C for 9 h or at −18°C for 8 d and then held at 21 or 30°C for 0 or 4 h. Patties were grilled to an internal temperature of 54.4°C (130°F), 62.8°C (145°F), or 68.3°C (155°F). Cultures were most resistant in frozen patties, while cultures in patties stored at 15°C were the most heat sensitive. Holding patties at 21 or 30°C prior to grilling resulted in increased sensitivity. Storage and holding temperatures similar to those encountered in food service may influence the ability of E. coli O157:H7 to survive heat treatments.


Sign in / Sign up

Export Citation Format

Share Document