A Limited Survey of Dark Chocolate Bars Obtained in the United States for Undeclared Milk and Peanut Allergens

2017 ◽  
Vol 80 (4) ◽  
pp. 692-702 ◽  
Author(s):  
Binaifer Bedford ◽  
Ye Yu ◽  
Xue Wang ◽  
Eric A. E. Garber ◽  
Lauren S. Jackson

ABSTRACT Undeclared allergens in chocolate products have been responsible for numerous allergen-related recalls in the United States. A survey was conducted to determine the prevalence of undeclared milk and peanut in 88 and 78 dark chocolate bars, respectively. Concentrations of milk (as nonfat dry milk) or peanut in three samples of each chocolate product were determined with two milk- or peanut-specific enzyme-linked immunosorbent assay kits. In 75% of the chocolate bar products with a milk advisory statement, milk concentrations were above the limit of quantitation (2.5 μg/g [ppm]), with the majority having concentrations >1,000 ppm. An additional 67% of chocolate bars with a “traces of milk” statement contained 3 to 6,700 ppm of milk. Fifteen percent of chocolates labeled dairy free or lactose free and 25% labeled vegan were positive for milk, all with concentrations >1,000 ppm. Even for chocolates with no reference to milk on the label, 33% of these products contained 60 to 3,400 ppm of milk. The survey of chocolate products for peanuts revealed that 8% of products with an advisory statement contained peanut, with the highest concentration of 550 ppm. All nine chocolates bearing the peanut-free or allergen-free statement were negative for peanut, but 17% of chocolates with no label statement for peanut were positive for peanut at concentrations of 9 to 170 ppm. Evaluation of multiple lots of four chocolate products revealed that milk was consistently present or absent for the products investigated, but mixed results were obtained when multiple lots were tested for peanut. This study indicates that a large proportion of dark chocolate bars contain undeclared milk. The type of advisory statement or the absence of a milk advisory statement on products did not predict the amount or absence of milk protein. In contrast, a lower proportion of chocolates containing undeclared peanut was found. Consumers with food allergies should be cautious when purchasing dark chocolate products, particularly those that have an advisory label statement.

2002 ◽  
Vol 65 (12) ◽  
pp. 1988-1991 ◽  
Author(s):  
NEIL BIRMINGHAM ◽  
SIRINART THANESVORAKUL ◽  
VENU GANGUR

Food allergies affect 6 to 8% of children and 2% of adults in the United States. For reasons that are not clear, eight types of food account for a vast majority (~90%) of food-induced hypersensitivity reactions. In this study, C57Bl/6 mice were used to test the hypothesis that commonly allergenic foods are intrinsically more immunogenic than rarely allergenic or nonallergenic foods in allergy-susceptible hosts. Groups of mice (n = 4 to 5) were injected intraperitoneally with the protein extracts (plus alum as an adjuvant) from chicken eggs, peanuts, almonds, filberts-hazelnuts, walnuts, soybeans, and wheat (commonly allergenic foods) and coffee, sweet potatoes, carrots, white potatoes, cherries, lettuce, and spinach (rarely allergenic and non-allergenic foods). Primary and secondary immune responses (as measured by specific IgG1 antibody serum levels) were measured by an enzyme-linked immunosorbent assay. Proteins from peanuts, almonds, filberts, sweet potatoes, cherries, and spinach elicited robust primary and/or secondary immune responses. Proteins from eggs, walnuts, and lettuce elicited poor primary responses but significant secondary responses. In contrast, wheat, soybeans, coffee, carrots, and white potatoes elicited barely detectable to poor primary and secondary immune responses. The order of the immunogenicity levels of these foods in mice is as follows: almonds = filberts > spinach (Rubisco) > peanuts ≥ sweet potatoes > cherries > lettuce > walnuts > chicken eggs > carrots ≥ white potatoes > wheat = coffee = soybeans. In summary, these data demonstrate for the first time that: (i) foods vary widely with regard to their relative immunogenicity in allergy-susceptible hosts and (ii) intrinsic immunogenicity in mice does not distinguish commonly allergenic foods from rarely allergenic or nonallergenic foods.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 701-701
Author(s):  
K.-S. Ling ◽  
R. Li ◽  
D. Groth-Helms ◽  
F. M. Assis-Filho

In recent years, viroid disease outbreaks have resulted in serious economic losses to a number of tomato growers in North America (1,2,3). At least three pospiviroids have been identified as the causal agents of tomato disease, including Potato spindle tuber viroid (PSTVd), Tomato chlorotic dwarf viroid (TCDVd), and Mexican papita viroid (MPVd). In the spring of 2013, a severe disease outbreak with virus-like symptoms (chlorosis and plant stunting) was observed in a tomato field located in the Dominican Republic, whose tomato production is generally exported to the United States in the winter months. The transplants were produced in house. The disease has reached an epidemic level with many diseased plants pulled and disposed of accordingly. Three samples collected in May of 2013 were screened by ELISA against 16 common tomato viruses (Alfalfa mosaic virus, Cucumber mosaic virus, Impatiens necrotic spot virus, Pepino mosaic virus, Potato virus X, Potato virus Y, Tobacco etch virus, Tobacco mosaic virus, Tobacco ringspot virus, Tomato aspermy virus, Tomato bushy stunt virus, Tomato mosaic virus, Tomato ringspot virus, Tomato spotted wilt virus, Groundnut ringspot virus, and Tomato chlorotic spot virus), a virus group (Potyvirus group), three bacteria (Clavibacter michiganensis subsp. michiganensis, Pectobacterium atrosepticum, and Xanthomonas spp.), and Phytophthora spp. No positive result was observed, despite the presence of symptoms typical of a viral-like disease. Further analysis by RT-PCR using Agdia's proprietary pospiviroid group-specific primer resulted in positive reactions in all three samples. To determine which species of pospiviroid was present in these tomato samples, full-genomic products of the expected size (~360 bp) were amplified by RT-PCR using specific primers for PSTVd (4) and cloned using TOPO-TA cloning kit (Invitrogen, CA). A total of 8 to 10 clones from each isolate were selected for sequencing. Sequences from each clone were nearly identical and the predominant sequence DR13-01 was deposited in GenBank (Accession No. KF683200). BLASTn searches into the NCBI database demonstrated that isolate DR13-01 shared 97% sequence identity to PSTVd isolates identified in wild Solanum (U51895), cape gooseberry (EU862231), or pepper (AY532803), and 96% identity to the tomato-infecting PSTVd isolate from the United States (JX280944). The relatively lower genome sequence identity (96%) to the tomato-infecting PSTVd isolate in the United States (JX280944) suggests that PSTVd from the Dominican Republic was likely introduced from a different source, although the exact source that resulted in the current disease outbreak remains unknown. It may be the result of an inadvertent introduction of contaminated tomato seed lots or simply from local wild plants. Further investigation is necessary to determine the likely source and route of introduction of PSTVd identified in the current epidemic. Thus, proper control measures could be recommended for disease management. The detection of this viroid disease outbreak in the Dominican Republic represents further geographic expansion of the viroid disease in tomatoes beyond North America. References: (1). K.-S. Ling and M. Bledsoe. Plant Dis. 93:839, 2009. (2) K.-S. Ling and W. Zhang. Plant Dis. 93:1216, 2009. (3) K.-S. Ling et al. Plant Dis. 93:1075, 2009. (4) A. M. Shamloul et al. Can. J. Plant Pathol. 19:89, 1997.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Gowrisankar Rajam ◽  
Maria Stella ◽  
Ellie Kim ◽  
Simon Paulos ◽  
Giuseppe Boccadifuoco ◽  
...  

ABSTRACT The meningococcal antigen typing system (MATS) is an enzyme-linked immunosorbent assay (ELISA)-based system that assesses the levels of expression and immune reactivity of the three recombinant MenB-4C antigens and, in conjunction with PorA variable 2 (VR2) sequencing, provides an estimate of the susceptibility of NmB isolates to killing by MenB-4C-induced antibodies. MATS assays or similar antigen phenotype analyses assume importance under conditions in which analyses of vaccine coverage predictions are not feasible with existing strategies, including large efficacy trials or functional antibody screening of an exhaustive strain panel. MATS screening of a panel of NmB U.S. isolates (n = 442) predicts high MenB-4C vaccine coverage in the United States. Neisseria meningitidis is the most common cause of bacterial meningitis in children and young adults worldwide. A 4-component vaccine against N. meningitidis serogroup B (MenB) disease (MenB-4C [Bexsero]; GSK) combining factor H binding protein (fHBP), neisserial heparin binding protein (NHBA), neisserial adhesin A (NadA), and PorA-containing outer membrane vesicles was recently approved for use in the United States and other countries worldwide. Because the public health impact of MenB-4C in the United States is unclear, we used the meningococcal antigen typing system (MATS) to assess the strain coverage in a panel of strains representative of serogroup B (NmB) disease in the United States. MATS data correlate with killing in the human complement serum bactericidal assay (hSBA) and predict the susceptibility of NmB strains to killing in the hSBA, the accepted correlate of protection for MenB-4C vaccine. A panel of 442 NmB United States clinical isolates (collected in 2000 to 2008) whose data were down weighted with respect to the Oregon outbreak was selected from the Active Bacterial Core Surveillance (ABCs; CDC, Atlanta, GA) laboratory. MATS results examined to determine strain coverage were linked to multilocus sequence typing and antigen sequence data. MATS predicted that 91% (95% confidence interval [CI95], 72% to 96%) of the NmB strains causing disease in the United States would be covered by the MenB-4C vaccine, with the estimated coverage ranging from 88% to 97% by year with no detectable temporal trend. More than half of the covered strains could be targeted by two or more antigens. NHBA conferred coverage to 83% (CI95, 45% to 93%) of the strains, followed by factor H-binding protein (fHbp), which conferred coverage to 53% (CI95, 46% to 57%); PorA, which conferred coverage to 5.9%; and NadA, which conferred coverage to 2.5% (CI95, 1.1% to 5.2%). Two major clonal complexes (CC32 and CC41/44) had 99% strain coverage. The most frequent MATS phenotypes (39%) were fHbp and NHBA double positives. MATS predicts over 90% MenB-4C strain coverage in the United States, and the prediction is stable in time and consistent among bacterial genotypes. IMPORTANCE The meningococcal antigen typing system (MATS) is an enzyme-linked immunosorbent assay (ELISA)-based system that assesses the levels of expression and immune reactivity of the three recombinant MenB-4C antigens and, in conjunction with PorA variable 2 (VR2) sequencing, provides an estimate of the susceptibility of NmB isolates to killing by MenB-4C-induced antibodies. MATS assays or similar antigen phenotype analyses assume importance under conditions in which analyses of vaccine coverage predictions are not feasible with existing strategies, including large efficacy trials or functional antibody screening of an exhaustive strain panel. MATS screening of a panel of NmB U.S. isolates (n = 442) predicts high MenB-4C vaccine coverage in the United States.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 528-528 ◽  
Author(s):  
C. J. Maroon-Lango ◽  
J. Hammond ◽  
S. Warnke ◽  
R. Li ◽  
R. Mock

Initial reports of the presence of Lolium latent virus (LLV) in Lolium perenne L. and L. multiflorum Lam. breeding clones in Germany, the Netherlands, France (2), and recently the United Kingdom (3,4; described as Ryegrass latent virus prior to identification as LLV) prompted us to evaluate clonally propagated Lolium plants from the United States. Four genetically distinct plants (viz., MF22, MF48, MF125, and MF132) that have been maintained clonally for 5 years from a Lolium perenne × L. multiflorum hybrid population established in the United States exhibited either no symptoms or mild chlorotic flecking that coalesced to form chlorotic to necrotic streaking on the leaves. All four clonal plants tested positive using reverse transcription-polymerase chain reaction (RT-PCR) with the Potexvirus group PCR test (Agdia, Inc., Elkhart, IN), whereas all clones but MF48 tested positive using the Potyvirus group PCR test (Agdia, Inc.). No amplicons were obtained when the same plants were tested for tobamovirus, carlavirus, and closterovirus using appropriate virus group-specific primers. Cloning and sequencing of the potexviral amplicons revealed very high sequence identity with the comparable region of LLV-UK (GenBank Accession No. DQ333886), whereas those of the potyviral amplicons (GenBank Accession Nos. DQ355837 and DQ355838) were nearly identical with the comparable region of Ryegrass mosaic virus (RGMV), a rymovirus first reported from the United States in 1957 (1). Using indirect enzyme-linked immunosorbent assay (ELISA), extracts from all four Lolium clonal propagations tested positive for LLV using the antiserum raised to LLV-Germany (courtesy of Dr. Huth), whereas the potyvirus-positive results from RT-PCR of the three clones were confirmed using indirect ELISA with the broad spectrum potyvirus monoclonal antibody, PTY-1. LLV from singly or dually infected Lolium clones was transmitted to Nicotiana benthamiana Domin. but not to N. tabacum L. by mechanical inoculation. LLV was purified from infected N. benthamiana. Similar sized flexuous rods were observed using electron microscopy in leaf dip samples from Lolium clones and aliquots of the virions purified from N. benthamiana. References: (1) G. W. Bruehl et al. Phytopathology 47:517, 1957. (2) W. Huth et al. Agronomie 15:508, 1995. (3) R. Li et al. Asian Conf. Plant Pathol. 2:89, 2005. (4) C. Maroon-Lango et al. Int. Congr. Virol. 13:63, 2005.


Plant Disease ◽  
1997 ◽  
Vol 81 (10) ◽  
pp. 1214-1214 ◽  
Author(s):  
J. R. Fisher ◽  
S. T. Nameth

Creeping bugleweed (Ajuga reptans L.) is a perennial ornamental commonly grown as a ground cover in temperate climates. Commercial samples of the A. reptans cultivars Royalty, var. Atropurpurea Bronze, Bronze Beauty, and Burgundy Glow showing mosaic and ringspot symptoms were tested for the presence of virus infection by direct antibody sandwich enzyme-linked immunosorbent assay (ELISA) and viral-associated double-stranded (ds) RNA analysis. Cucumber mosaic cucumovirus (CMV) was detected by ELISA and dsRNA analysis in symptomatic samples of all cultivars tested. ELISA values were considered positive if the absorbance values were twice the negative control. Negative control values were established with asymptomatic tissue of the cv. Bronze Beauty. Tobacco streak ilarvirus (TSV) was detected only by ELISA in symptomatic samples of all cultivars except Royalty. No dsRNA suggestive of TSV was detected. Alfalfa mosaic virus (AMV) was detected by ELISA and dsRNA analysis in symptomatic samples of all cultivars tested except Royalty and var. Atropurpurea Bronze. dsRNA analysis also indicated the presence of a low molecular weight, possible satellite (sat) RNA associated with all symptomatic and asymptomatic Royalty and var. Atropurpurea Bronze plants tested. Northern (RNA) blot analysis with a digoxigenin-labeled full-length clone of the (S) CARNA-5 (-) CMV satRNA (ATCC no. 45124) confirmed that the low molecular weight RNA associated with the Royalty and var. Atropurpurea Bronze cultivars was indeed CMV satRNA. Only AMV has been previously reported in A. reptans in the United States (1). This is the first report of CMV and its satRNA, as well as TSV, in A. reptans in the United States. Reference: (1) W. T. Schroeder and R. Provvidenti. Plant Dis. Rep. 56:285, 1972.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 833-833 ◽  
Author(s):  
C. A. Baker ◽  
L. Breman ◽  
L. Jones

In the fall of 1998, the Division of Plant Industry (DPI) received vegetative propagations of Scutellaria longifolia (skullcap) with symptoms of foliar mosaic, chlorotic/necrotic ringspots, and wavy line patterns from a nursery in Manatee County. Flexuous particles approximately 500 nm long were found with electron microscopy. The plants tested positive for Papaya mosaic virus (PaMV) in an enzyme-linked immunosorbent assay (ELISA) test with antiserum to PaMV (Agdia, Elkhart, IN). However, in immunodiffusion tests (antiserum from D. Purcifull, University of Florida), this virus gave a reaction of partial identity indicating it was related but not identical to PaMV (1). The original infected plants were kept in a greenhouse. In January 2005, a specimen of Crossandra infundibuliformis (firecracker plant) with mosaic symptoms was submitted to the DPI from a nursery in Alachua County. Inclusions found with light microscopy and particles found with electron microscopy indicated that this plant was infected with a potexvirus. This was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) with primers designed to detect members of the virus family Potexviridae (3). These plants reacted positive to PaMV antiserum in ELISA and gave a reaction of partial identity to PaMV in immunodiffusion. A specimen of Portulaca grandiflora (moss rose) with distorted leaves found at a local retail store was also tested and gave the same results. Leaves from each of the three plant species were rubbed onto a set of indicator plants using Carborundum and potassium phosphate buffer. Total RNA was extracted from symptomatic indicator plants of Nicotiana benthamiana. RT-PCR (3) was performed, and PCR products were sequenced directly. Sequences of approximately 700 bp were obtained for all three plant species and showed 98% identity with each other. BLAST search results showed that these sequences were 93% identical to an Alternanthera mosaic virus (AltMV) sequence at the nucleotide level but only 76% identical to PaMV. The amino acid sequences were 98 and 82% identical to AltMV and PaMV, respectively. The PCR products of the virus from Scutellaria sp. were cloned, resequenced, and the sequence was entered into the GenBank (Accession No. DQ393785). The bioassay results matched those found for AltMV in Australia (2) and the northeastern United States (4), except that the Florida viruses infected Datura stramonium and Digitalis purpurea (foxglove). The virus associated with the symptoms of these three plants appears to be AltMV and not PaMV. AltMV has been found in ornamental plants in Australia, Italy, and the United States (Pennsylvania, Maryland, and now Florida). Since this virus is known to infect several plants asymptomatically and can be easily confused with PaMV serologically, it is likely that the distribution of this virus is much wider than is known at this time. References: (1) L. L. Breman. Plant Pathology Circular No. 396. Fla. Dept. Agric. Consum. Serv. DPI, 1999. (2) A. D. W. Geering and J. E. Thomas. Arch Virol 144:577, 1999. (3) A. Gibbs et al. J Virol Methods 74:67, 1998. (4) J. Hammond et al. Arch Virol. 151:477, 2006.


PEDIATRICS ◽  
2018 ◽  
Vol 142 (6) ◽  
pp. e20181235 ◽  
Author(s):  
Ruchi S. Gupta ◽  
Christopher M. Warren ◽  
Bridget M. Smith ◽  
Jesse A. Blumenstock ◽  
Jialing Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document