Twenty-four month longitudinal study suggests little to no horizontal gene transfer in situ between third-generation cephalosporin-resistant Salmonella and third-generation cephalosporin-resistant Escherichia coli in a beef cattle feedyard

Author(s):  
John W. Schmidt ◽  
Sarah A. Murray ◽  
Aaron Dickey ◽  
Tommy L. Wheeler ◽  
Dayna M. Harhay ◽  
...  

Third-generation cephalosporins (3GCs) are preferred treatments for serious human Salmonella enterica infections. Beef cattle are suspected to contribute to human 3GC-resistant Salmonella infections. Commensal 3GC-resistant Escherichia coli are thought to act as reservoirs of 3GC resistance since they are more frequently isolated than 3GC-resistant Salmonella at beef cattle feedyards. During each of 24 consecutive months 4 samples of pen surface material were obtained from 5 pens ( N = 480) at a Nebraska feedyard to determine to the contribution of 3GC-resistant E. coli to the occurrence of 3GC-resistant Salmonella . Illumina whole genome sequencing was performed and susceptibilities to 14 antimicrobial agents were determined for 121 3GC-susceptible Salmonella , 121 3GC-resistant Salmonella , and 203 3GC-resistant E. coli isolates. 3GC-susceptible Salmonella isolates were predominantly Muenchen (70.2%) and Montevideo Clade 1 (23.1%). 3GC-resistant Salmonella isolates were predominantly Montevideo Clade 2 (84.3%). One bla gene type ( bla CMY-2 ) and the IncC plasmid replicon were present in 100% and 97.5% of the 3GC-resistant Salmonella , respectively. Eleven bla gene types were detected in the 3GC-resistant E. coli . The 3GC-resistant E. coli were distributed across 42 multilocus sequence types. The bla CMY-2 gene and IncC plasmid replicon were present in 37.9% and 9.9% of the 3GC-resistant E . coli , respectively. These results suggested that 3GC resistance in Salmonella was primarily due the persistence of Montevideo Clade 2 with very minimal or no contribution from 3GC-resistant E. coli via horizontal gene transfer, suggesting that 3GC-resistant E. coli may not be a useful indicator for 3GC-resistant Salmonella in beef cattle production environments.

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dongxing Tian ◽  
Bingjie Wang ◽  
Hong Zhang ◽  
Fen Pan ◽  
Chun Wang ◽  
...  

ABSTRACT The continuous emergence of novel New Delhi metallo-β-lactamase-5 (NDM-5)-producing Enterobacteriaceae isolates is receiving more and more public attention. Twenty-two NDM-5-producing strains were identified from 146 carbapenemase-producing Enterobacteriaceae (CRE) strains isolated from pediatric patients between January and March 2017, indicating that the blaNDM-5 gene has spread to children. All 22 isolates, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, showed significantly high resistance to β-lactam antibiotics (except aztreonam) but remained susceptible to tigecycline and colistin. K. pneumoniae and K. aerogenes strains were respectively defined as homologous clonal isolates by pulsed-field gel electrophoresis (PFGE). Multilocus sequence typing (MLST) results confirmed the genetic relatedness with all K. pneumoniae strains belonging to sequence type (ST) 48. Two E. coli isolates (ST617 and ST1236) were considered genetically unrelated. Twenty-two blaNDM-5 plasmids were positive for the IncX3 amplicon and showed almost identical profiles after digestion with HindIII and EcoRI. Four representative strains (K. pneumoniae K725, K. aerogenes CR33, E. coli Z214, and E. coli Z244) were selected for further study. Plasmids harboring blaNDM-5 showed strong stability in both clinical isolates and transconjugants, without apparent plasmid loss after 100 serial generations. S1-PFGE followed by Southern blot analysis demonstrated that the blaNDM-5 gene was located on an ∼46-kb plasmid. Plasmid sequences of pNDM-K725, pNDM-CR33, and pNDM-Z214 were almost identical but were slightly different from that of pNDM-Z244. Compared with pNDM-Z244, ΔISAba125 and partial copies of IS3000 were missing. The genetic backgrounds of the blaNDM-5 gene in four strains were slightly different from that of the typical pNDM_MGR194. This study comprehensively characterized the horizontal gene transfer of the blaNDM-5 gene among different Enterobacteriaceae isolates in pediatric patients, and the IncX3-type plasmid was responsible for the spread. IMPORTANCE The emergence of CRE strains resistant to multiple antibiotics is considered a substantial threat to human health. Therefore, all the efforts to provide a detailed molecular transmission mechanism of specific drug resistance can contribute positively to prevent the further spread of multidrug-resistant bacteria. Although the new superbug harboring blaNDM-5 has been reported in many countries, it was mostly identified among E. coli strains, and the gene transfer mechanism has not been fully recognized and studied. In this work, we identified 22 blaNDM-5-positive strains in different species of Enterobacteriaceae, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, which indicated the horizontal gene transfer of blaNDM-5 among Enterobacteriaceae strains in pediatric patients. Moreover, blaNDM-5 was located on a 46-kb IncX3 plasmid, which is possibly responsible for this widespread horizontal gene transfer. The different genetic contexts of the blaNDM-5 gene indicated some minor evolutions of the plasmid, based on the complete sequences of the blaNDM-5 plasmids. These findings are of great significance to understand the transmission mechanism of drug resistance genes, develop anti-infection treatment, and take effective infection control measures.


2013 ◽  
Vol 57 (12) ◽  
pp. 6351-6353 ◽  
Author(s):  
Claire Chauvin ◽  
Laetitia Le Devendec ◽  
Eric Jouy ◽  
Maena Le Cornec ◽  
Sylvie Francart ◽  
...  

ABSTRACTResistance ofEscherichia colito third-generation cephalosporin (3GC) in fecal samples representative of French egg production was studied. The susceptibility to cefotaxime ofE. coliisolates obtained by culture on nonselective media was determined. Twenty-two nonsusceptible isolates were obtained (7.51%; 95% confidence interval, 4.49 to 10.54%), the majority of which came from young birds. Most isolates carried ablaCTX-M-1group gene, and a few carried ablaCMY-2-like gene. Control of 3GC resistance in laying hens is needed.


Author(s):  
Xuemei Zhen ◽  
Cecilia Stålsby Lundborg ◽  
Xueshan Sun ◽  
Xiaoqian Hu ◽  
Hengjin Dong

Quantifying economic and clinical outcomes for interventions could help to reduce third-generation cephalosporin resistance and Escherichia coli or Klebsiella pneumoniae. We aimed to compare the differences in clinical and economic burden between third-generation cephalosporin-resistant E. coli (3GCREC) and third-generation cephalosporin-susceptible E. coli (3GCSEC) cases, and between third-generation cephalosporin-resistant K. pneumoniae (3GCRKP) and third-generation cephalosporin-susceptible K. pneumoniae (3GCSKP) cases. A retrospective and multicenter study was conducted. We collected data from electronic medical records for patients who had clinical samples positive for E. coli or K. pneumoniae isolates during 2013 and 2015. Propensity score matching (PSM) was conducted to minimize the impact of potential confounding variables, including age, sex, insurance, number of diagnoses, Charlson comorbidity index, admission to intensive care unit, surgery, and comorbidities. We also repeated the PSM including length of stay (LOS) before culture. The main indicators included economic costs, LOS and hospital mortality. The proportions of 3GCREC and 3GCRKP in the sampled hospitals were 44.3% and 32.5%, respectively. In the two PSM methods, 1804 pairs and 1521 pairs were generated, and 1815 pairs and 1617 pairs were obtained, respectively. Compared with susceptible cases, those with 3GCREC and 3GCRKP were associated with significantly increased total hospital cost and excess LOS. Inpatients with 3GCRKP were significantly associated with higher hospital mortality compared with 3GCSKP cases, however, there was no significant difference between 3GCREC and 3GCSEC cases. Cost reduction and outcome improvement could be achieved through a preventative approach in terms of both antimicrobial stewardship and preventing the transmission of organisms.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 870-873 ◽  
Author(s):  
Sandra L. Preston ◽  
Laurie L. Briceland

OBJECTIVE: To report a case of gram-negative bacillary meningitis (GNBM) secondary to cephalosporin-resistant Escherichia coli that was treated with intrathecal and intravenous amikacin and intravenous imipenem/cilastatin (I/C). CASE SUMMARY: A patient who had undergone two recent neurosurgical procedures developed GNBM and bacteremia. He was treated empirically with ceftazidime. Both bloodstream and cerebrospinal fluid isolates were identified as E. coli, resistant to third-generation cephalosporins, penicillins, tobramycin, and gentamicin. The patient was subsequently treated with intravenous and intrathecal amikacin plus intravenous I/C He experienced subjective and objective improvement on days 2–4 of antimicrobial therapy; two generalized tonic-clonic seizures occurred on days 7 and 12. Intrathecal amikacin was discontinued after 6 days, and intravenous amikacin and I/C were discontinued after 23 and 27 days, respectively. The patient's mental status did not completely return to premeningitis baseline. DISCUSSION: Third-generation cephalosporins are the treatment of choice for GNBM. In the case reported herein, bacterial resistance to these agents prompted the use of a therapy that has not been well studied and is also considered to be less safe and perhaps less efficacious. Treatment of GNBM with an intrathecally administered aminoglycoside or with intravenous I/C plus an aminoglycoside is reviewed. CONCLUSIONS: Patients with GNBM secondary to third-generation cephalosporin-resistant organisms may require therapies that may be less effective and more toxic. Further study of alternative agents is warranted.


2009 ◽  
Vol 75 (11) ◽  
pp. 3648-3655 ◽  
Author(s):  
Joshua B. Daniels ◽  
Douglas R. Call ◽  
Dale Hancock ◽  
William M. Sischo ◽  
Katherine Baker ◽  
...  

ABSTRACT Third-generation cephalosporin resistance of Salmonella and commensal Escherichia coli isolates from cattle in the United States is predominantly conferred by the cephamycinase CMY-2, which inactivates β-lactam antimicrobial drugs used to treat a wide variety of infections, including pediatric salmonellosis. The emergence and dissemination of bla CMY-2 --bearing plasmids followed and may in part be the result of selection pressure imposed by the widespread utilization of ceftiofur, a third-generation veterinary cephalosporin. This study assessed the potential effects of ceftiofur on bla CMY-2 transfer and dissemination by (i) an in vivo experimental study in which calves were inoculated with competent bla CMY-2-bearing plasmid donors and susceptible recipients and then subjected to ceftiofur selection and (ii) an observational study to determine whether ceftiofur use in dairy herds is associated with the occurrence and frequency of cephalosporin resistance in Salmonella and commensal E. coli. The first study revealed bla CMY-2 plasmid transfer in both ceftiofur-treated and untreated calves but detected no enhancement of plasmid transfer associated with ceftiofur treatment. The second study detected no association (P = 0.22) between ceftiofur use and either the occurrence of ceftiofur-resistant salmonellosis or the frequency of cephalosporin resistance in commensal E. coli. However, herds with a history of salmonellosis (including both ceftiofur-resistant and ceftiofur-susceptible Salmonella isolates) used more ceftiofur than herds with no history of salmonellosis (P = 0.03) These findings fail to support a major role for ceftiofur use in the maintenance and dissemination of bla CMY-2-bearing plasmid mediated cephalosporin resistance in commensal E. coli and in pathogenic Salmonella in these dairy cattle populations.


2015 ◽  
Vol 78 (5) ◽  
pp. 912-920 ◽  
Author(s):  
ROBERT S. BARLOW ◽  
KATE E. McMILLAN ◽  
LESLEY L. DUFFY ◽  
NARELLE FEGAN ◽  
DAVID JORDAN ◽  
...  

Antimicrobial agents are used in cattle production systems for the prevention and control of bacteria associated with diseases. Australia is the world's third largest exporter of beef; however, this country does not have an ongoing surveillance system for antimicrobial resistance (AMR) in cattle or in foods derived from these animals. In this study, 910 beef cattle, 290 dairy cattle, and 300 veal calf fecal samples collected at slaughter were examined for the presence of Escherichia coli and Salmonella, and the phenotypic AMR of 800 E. coli and 217 Salmonella isolates was determined. E. coli was readily isolated from all types of samples (92.3% of total samples), whereas Salmonella was recovered from only 14.4% of samples and was more likely to be isolated from dairy cattle samples than from beef cattle or veal calf samples. The results of AMR testing corroborate previous Australian animal and retail food surveys, which have indicated a low level of AMR. Multidrug resistance in Salmonella isolates from beef cattle was detected infrequently; however, the resistance was to antimicrobials of low importance in human medicine. Although some differences in AMR between isolates from the different types of animals were observed, there is minimal evidence that specific production practices are responsible for disproportionate contributions to AMR development. In general, resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of AMR in bacteria from Australian cattle is likely a result of strict regulation of antimicrobials in food animals in Australia and animal management systems that do not favor bacterial disease.


2000 ◽  
Vol 66 (3) ◽  
pp. 1205-1208 ◽  
Author(s):  
Herbert Schmidt ◽  
Jürgen Scheef ◽  
Stefano Morabito ◽  
Alfredo Caprioli ◽  
Lothar H. Wieler ◽  
...  

ABSTRACT We have isolated Shiga toxin (Stx)-producing Escherichia coli (STEC) strains from the feces of feral pigeons which contained a new Stx2 variant gene designatedstx2f . This gene is most similar tosltIIva of patient E. coli O128:B12 isolate H.I.8. Stx2f reacted only weakly with commercial immunoassays. The prevalence of STEC organisms carrying the stx2f gene in pigeon droppings was 12.5%. The occurrence of a new Stx2 variant in STEC from pigeons enlarges the pool of Stx2 variants and raises the question whether horizontal gene transfer to E. coli pathogenic to humans may occur.


2013 ◽  
Vol 76 (3) ◽  
pp. 394-404 ◽  
Author(s):  
SHIORI YAMAMOTO ◽  
ERIKO IWABUCHI ◽  
MEGUMI HASEGAWA ◽  
HIDETAKE ESAKI ◽  
MASATAKE MURAMATSU ◽  
...  

We investigated the prevalence of antimicrobial-resistant Escherichia coli in Japanese black beef cattle from the three major production regions of Japan. We collected and examined 291 fecal samples from Japanese black beef cattle in Hokkaido, Chubu, and Kyushu. Of the 3,147 E. coli isolates, 1,397 (44.4%) were resistant to one or more antibiotics; these included 553 (39.8%) of 1,388 isolates from Hokkaido, 352 (54.4%) of 647 isolates from Chubu, and 492 (44.2%) of 1,112 isolates from Kyushu. The difference in resistance rates between the three regions was significant. The antibiotics with the highest rates of resistance were oxytetracycline and dihydrostreptomycin (35.8% each), followed by ampicillin (21.4%). Further, E. coli isolates from calves had higher resistance rates than those from growing cattle and mature cattle, and the calf isolates showed high rates of resistance to gentamicin (20.2%), enrofloxacin (9.4%), and ceftiofur (4.2%). In addition, the high degrees of similarity in the genotypes of the isolates and in the resistance patterns on each farm suggest that resistance bacteria and resistance genes were horizontally transferred. Most isolates, in each of the three regions, harbored resistance genes such as blaTEM, strA, strB, aphA1, aphAI-IAB, and catI. In contrast to the isolates from Kyushu, most of which harbored aacC2, tetB, and dfrA12, the isolates from Hokkaido and Chubu harbored a variety of resistance genes. Furthermore, the prevalence of genes for resistance to dihydrostreptomycin, gentamicin, chloramphenicol, and trimethoprim differed significantly between the regions. This is the first large-scale study describing and comparing antimicrobial-resistant bacteria from different regions in Japan. The results will contribute to improving food safety and promoting careful usage of antimicrobial agents.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Jacqueline Findlay ◽  
Oliver Mounsey ◽  
Winnie W. Y. Lee ◽  
Nerissa Newbold ◽  
Katy Morley ◽  
...  

ABSTRACT Third-generation cephalosporin resistance (3GC-R) in Escherichia coli is a rising problem in human and farmed-animal populations. We conducted whole-genome sequencing analysis of 138 representative 3GC-R isolates previously collected from dairy farms in southwest England and confirmed by PCR to carry acquired 3GC-R genes. This analysis identified blaCTX-M (131 isolates encoding CTX-M-1, -14, -15, -and 32 and the novel variant CTX-M-214), blaCMY-2 (6 isolates), and blaDHA-1 (1 isolate). A highly conserved plasmid was identified in 73 isolates, representing 27 E. coli sequence types. This novel ∼220-kb IncHI2 plasmid carrying blaCTX-M-32 was sequenced to closure and designated pMOO-32. It was found experimentally to be stable in cattle and human transconjugant E. coli even in the absence of selective pressure and was found by multiplex PCR to be present on 26 study farms representing a remarkable range of transmission over 1,500 square kilometers. However, the plasmid was not found among human urinary E. coli isolates we recently characterized from people living in the same geographical location, collected in parallel with farm sampling. There were close relatives of two blaCTX-M plasmids circulating among eight human and two cattle isolates, and a closely related blaCMY-2 plasmid was found in one cattle and one human isolate. However, phylogenetic evidence of recent sharing of 3GC-R strains between farms and humans in the same region was not found. IMPORTANCE Third-generation cephalosporins (3GCs) are critically important antibacterials, and 3GC resistance (3GC-R) threatens human health, particularly in the context of opportunistic pathogens such as Escherichia coli. There is some evidence for zoonotic transmission of 3GC-R E. coli through food, but little work has been done examining possible transmission via interaction of people with the local near-farm environment. We characterized acquired 3GC-R E. coli found on dairy farms in a geographically restricted region of the United Kingdom and compared these with E. coli from people living in the same region, collected in parallel. While there is strong evidence for recent farm-to-farm transmission of 3GC-R strains and plasmids—including one epidemic plasmid that has a remarkable capacity to be transmitted—there was no evidence that 3GC-R E. coli found on study farms had a significant impact on circulating 3GC-R E. coli strains or plasmids in the local human population.


2019 ◽  
Vol 116 (36) ◽  
pp. 17906-17915 ◽  
Author(s):  
Nelson Frazão ◽  
Ana Sousa ◽  
Michael Lässig ◽  
Isabel Gordo

Bacteria evolve by mutation accumulation in laboratory experiments, but tempo and mode of evolution in natural environments are largely unknown. Here, we study the ubiquitous natural process of host colonization by commensal bacteria. We show, by experimental evolution of Escherichia coli in the mouse intestine, that the ecology of the gut controls the pace and mode of evolution of a new invading bacterial strain. If a resident E. coli strain is present in the gut, the invading strain evolves by rapid horizontal gene transfer (HGT), which precedes and outweighs evolution by accumulation of mutations. HGT is driven by 2 bacteriophages carried by the resident strain, which cause an epidemic phage infection of the invader. These dynamics are followed by subsequent evolution by clonal interference of genetically diverse lineages of phage-carrying (lysogenic) bacteria. We show that the genes uptaken by HGT enhance the metabolism of specific gut carbon sources and provide a fitness advantage to lysogenic invader lineages. A minimal dynamical model explains the temporal pattern of phage epidemics and the complex evolutionary outcome of phage-mediated selection. We conclude that phage-driven HGT is a key eco-evolutionary driving force of gut colonization—it accelerates evolution and promotes genetic diversity of commensal bacteria.


Sign in / Sign up

Export Citation Format

Share Document