scholarly journals Removal of biological organics in high-salinity wastewater produced from methylcellulose production and subsequent changes in the microbial community

2020 ◽  
Vol 26 (4) ◽  
pp. 200187-0
Author(s):  
GueSoo Jo ◽  
SeongWan Hong ◽  
HyunGu Kim ◽  
Zhuliping ◽  
DaeHee Ahn

The wastewater generated in methylcellulose (MC) production is characterized by high salinity and pH due to the residual sodium and chlorine separated from the methyl group. It is difficult to treat wastewater using the conventional activated sludge method because the high concentration of salt interferes with the microbial activity. This study confirms the biological removal of organic matter from MC wastewater using sludge dominated by Halomonas spp., a halophilic microorganism. The influent was mixed with MC wastewater and epichlorohydrin (ECH) wastewater in a 1:9 ratio and operated using a sequencing batch reactor with a hydraulic retention time of 27.8 d based on the MC wastewater. The removal efficiency of chemical oxygen demand (COD) increased from 80.4% to 93.5%, and removal efficiency had improved by adding nutrients such as nitrogen and phosphorus to the wastewater. In terms of microbial community change, Halomonas spp. decreased from 43.26% to 0.11%, whereas Marinobacter spp. and Methylophaga spp. increased from 0.50% to 15.12% and 7.51%, respectively.

2020 ◽  
Vol 82 (9) ◽  
pp. 1795-1807 ◽  
Author(s):  
Dejun Bian ◽  
Zebing Nie ◽  
Fan Wang ◽  
Shengshu Ai ◽  
Suiyi Zhu ◽  
...  

Abstract A micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR. Operated in sequencing batch reactor mode, distinct biological environments spatially and temporally were created. Under the average influent condition of chemical oxygen demand (COD) concentration of 2,884 mg/L and total nitrogen (TN) of 184 mg/L, COD removal efficiency and removal loading was 98% and 1.8 kgCOD/(m3·d) respectively, and TN removal efficiency and removal loading reached up to 90% and 0.11 kgTN/(m3·d) respectively. With efficient utilization of DO and simpler configuration for simultaneous nitrification and denitrification, the MPSR has the potential of treating high-concentration wastewater at lower cost.


2012 ◽  
Vol 610-613 ◽  
pp. 1573-1578
Author(s):  
Yu Hong Zhou

Biological removal of nitrogen and phosphorus species from an artificial wastewater was investigated in a sequencing batch reactor ( SBR) by changing operating mode which simulation oxidation ditch aeration realization of point and achieved alternate anoxic/aerobic, The results show that: the total control for 6 h reaction time, including aeration 3 h, stop aeration 3 h, four conditions under the condition of 30 min, 10 min, 5 min, 3 min anoxic/ aerobic alternate of COD, ammonia nitrogen removal not too big effect, TN, TP influence is bigger. COD removal efficiency is above 89% for four modes and effluent COD is lower than 35mg/L.Ammonia nitrogen average removal efficiency is above 90% for four modes and effluent ammonia is less than 5mg/L.Total nitrogen removal rates was 68.71%, 67.70%, 60.36%, 37.27% respectively for four modes. In instantaneous influent, anoxic and aerobic alternating time should not be less than 5min for TN removal. Mode Ⅰto Ⅳ removal efficiency of TP was 23.05%, -2.17%, 1.19%, 43.61% respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 5347-5350
Author(s):  
Jia Xie ◽  
Xiao Xiang Zhao ◽  
Xin Shan Song ◽  
Jun Hu Wei

The successful cultivation of aerobic granular sludge used for simultaneous nitrogen and phosphorus removal in sequencing batch reactor (SBR) was performed using a synthetic domestic wastewater and conventional flocculent activated sludge as seeding sludge. The removal efficiency of sludge for chemical oxygen demand (COD),ammonia nitrogen and phosphate was 92.4%,88.1% and 95.9%, respectively. After screening, a strain was obtained with high efficient in nitrogen and phosphorus removal. By analyzing, the strain was identified as Raoultella ornithinolytica. After strain accumulation, the strain cultured at 30°C for 24h. The ammonia nitrogen and phosphate removal efficiency were 78.3% and 92%, respectively.


2016 ◽  
Vol 8 (1) ◽  
pp. 123-134
Author(s):  
Amel Benhadji ◽  
Mourad Taleb Ahmed ◽  
Hayet Djelal ◽  
Rachida Maachi

Abstract A spent tanning bath contains high concentration of salts, chromium and protein. The treatment system for removal of chlorides or chromium from this effluent is expensive. In this context this waste has to be reused. Our study focuses on the application of advanced oxidation processes for protein removal present in a tanning bath. To improve the quality of the chromium tanning bath, two electrochemical processes (electrooxidation and peroxi-electrocoagulation process, PEP) are investigated in a batch reactor. The effects of operational parameters such as reactor configuration, current density and electrolysis time on chemical oxygen demand (COD) and protein removal efficiency are examined. Results indicated that under the optimum operating range for process, the COD and protein removal efficiency reached 53 and 100%, respectively. The optimum values are determined for the hybrid process (PEP) under 0.13 A·cm−2 over 2 h. The treated tanning bath is used as a tanning solution in leather processing. The influence of chromium salt dose, pH solution, stirring time and contact time on the leather characteristic is evaluated. The hides tanned after the addition of 0.25% of commercial chromium salt, at pH solution, leaving them stirring for 4 h with a contact time of 2 days, and showed good hydrothermal stability and physical characteristics of leather.


2018 ◽  
Vol 2017 (3) ◽  
pp. 661-666
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

Abstract Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe3+ as catalyst was carried out in a batch reactor. Results showed that the degradation of pharmaceutical wastewater was enhanced significantly by Fe3+. The effects of reaction parameters, such as the catalyst dose, reaction temperature, time, and initial oxygen pressure, were discussed. The chemical oxygen demand (COD) removal increased with the increases of catalyst dose, temperature, time and oxygen supply. With the initial COD 34,000–35,000 mg/L, approximately 70% COD removal can be achieved under the conditions of catalyst 1.0 g and oxygen pressure 1.0 MPa at 250 °C after 60 min. The results of kinetic studies showed that two reaction steps existed in this oxidation process, which followed an apparent first-order rate law. This process provides an effective approach for the pretreatment of high concentration pharmaceutical wastewater.


2017 ◽  
Vol 77 (4) ◽  
pp. 988-998 ◽  
Author(s):  
Tadesse Alemu ◽  
Andualem Mekonnen ◽  
Seyoum Leta

Abstract In the present study, a pilot scale horizontal subsurface flow constructed wetland (CW) system planted with Phragmites karka; longitudinal profile was studied. The wetland was fed with tannery wastewater, pretreated in a two-stage anaerobic digester followed by a sequence batch reactor. Samples from each CW were taken and analyzed using standard methods. The removal efficiency of the CW system in terms of biological oxygen demand (BOD), chemical oxygen demand (COD), Cr and total coliforms were 91.3%, 90%, 97.3% and 99%, respectively. The removal efficiency for TN, NO3− and NH4+-N were 77.7%, 66.3% and 67.7%, respectively. Similarly, the removal efficiency of SO42−, S2− and total suspended solids (TSS) were 71.8%, 88.7% and 81.2%, respectively. The concentration of COD, BOD, TN, NO3−N, NH4+-N, SO42 and S2− in the final treated effluent were 113.2 ± 52, 56 ± 18, 49.3 ± 13, 22.75 ± 20, 17.1 ± 6.75, 88 ± 120 and 0.4 ± 0.44 mg/L, respectively. Pollutants removal was decreased in the first 12 m and increased along the CW cells. P. karka development in the first cell of CW was poor, small in size and experiencing chlorosis, but clogging was higher in this area due to high organic matter settling, causing a partial surface flow. The performance of the pilot CW as a tertiary treatment showed that the effluent meets the permissible discharge standards.


2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2494
Author(s):  
Łukasz Jurczyk ◽  
Justyna Koc-Jurczyk ◽  
Adam Masłoń

Air stripping is commonly used to remove the ammonia in multistage treatment systems for municipal landfill leachate (LFL). This paper proposes a novel approach combining the process of stripping with biological removal of ammonia, based on simultaneous nitrification and denitrification (SND) in a single hybrid sequencing batch reactor (HSBR). To avoid the accumulation of free ammonia (N-FAN), the shallow aeration system was used for the treatment of raw LFL with N-TAN level of 1520 mg/L and pH 9.24. The mean N-FAN removal efficiency of 69% with the reaction rate of 55 mg L−1 h−1 and mean ammonium (N-NH4+) removal efficiency of 84% with the reaction rate of 44 mg L−1 h−1 were achieved within a month in such an HSBR (R1). The comparative HSBR (R2), with conventional aeration system maintaining the same concentration of dissolved oxygen (DO ≤ 1 mg/L), was removing only trace amounts of N-FAN and 48% of N-NH4+. The quantitative analysis of 16S rRNA genes indicated that the number of total bacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Beta- and Gammaproteobacteria increased during the operation of both HSBRs, but was always higher in R1. Moreover, the bacterial community shift was observed since the beginning of the experiment; the relative abundance of Firmicutes, and Beta- and Gammaproteobacteria increased by 5.01, 3.25 and 9.67% respectively, whilst the abundance of Bacteroidetes and Actinobacteria decreased by 15.59 and 0.95%. All of the surveyed bacteria groups, except Gammaproteobacteria, correlated significantly negatively (p < 0.001) with the concentrations of N-NH4+ in the outflows from R1. The results allow us to suppose that simultaneous stripping and SND in a single reactor could be a promising, cost-effective and easy-to-operate solution for LFL treatment.


2012 ◽  
Vol 610-613 ◽  
pp. 1454-1458
Author(s):  
Ming Fen Niu ◽  
Hong Jing Jiao ◽  
Li Xu ◽  
Yan Yu ◽  
Jian Wei

A2N is two-sludge system, by using the method that first bringing up the cultivation of denitrifying phosphorus removing bacteria (DPB) and nitrification biofilm separately then connecting them, which can start up A2N system successfully. Nitrification biofilm was cultivated in a sequencing batch reactor (SBR). After 30 days, NH4+-N effluent concentration steadily stayed below 0.5mg·L-1.In another SBR, the activated sludge for the enrichment of DPB is from the anaerobic tank, which was firstly operated under anaerobic/aerobic (A/O) condition. After 20 days, PAOs was successfully enriched. Then, the activated sludge was conducted under anaerobic/anoxic/aerobic (A/A/O) condition, maintaining the anaerobic time, gradually increased anoxic time and induced aerobic time. After 30 days DPB was successfully enriched, two phases totally take 50 days. The removal efficiency of total nitrogen and phosphorus are above 85 % and 95 %, so that A2N system was started up successfully.


2016 ◽  
Vol 74 (7) ◽  
pp. 1553-1560
Author(s):  
Kun Zhong ◽  
Yi-yong Luo ◽  
Zheng-song Wu ◽  
Qiang He ◽  
Xue-bin Hu ◽  
...  

A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m3/(m2·d), carbon–nitrogen ratio was 10, and gas–water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4+-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4+-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic–anaerobic–aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.


Sign in / Sign up

Export Citation Format

Share Document