scholarly journals The effective application of mud cooler machine to support to carry out the infill wells in Cuu Long basin

2021 ◽  
Vol 62 (3a) ◽  
pp. 76-84
Author(s):  
Tuan Tran Nguyen ◽  
Son Hoang Nguyen ◽  

This paper presents some studies on the application of mud cooler in Oil and Gas drilling in a high temperature, high pressure condition of Cuu Long reservoir. The authors have proposed a method to study the theory of temperature effects on drilling fluid properties, that have been tested practically. The authors have remarked on each type of drilling rig and installation location. With these remarks, the authors give an option to install the "Mud cooler" on the rig at the appropriate location and method so that the temperature of the solution will be ensured to reduce to a safe level. The effective application of this equipment has greatly assisted drilling process since the fluid temperature has been reduced sharply before returning to the mud tank. This has helped cut down expenses significantly by prolonging eqipment's endurability, saving time for drilling, ship renting, drilling services and minimize the budget spent on buying the fluid and additives to recover it. Thus, the drilling workers' working conditions have been facilitated. The results of these studies have been proved scientifically and practically through the successful drilling of well ST-3P-ST. This will make the way for other local wells and reservoirs which have the same conditions of temperature and pressure.

2017 ◽  
Vol 899 ◽  
pp. 469-473 ◽  
Author(s):  
Irineu Petri Jr. ◽  
Jéssika Marina dos Santos ◽  
Arley Silva Rossi ◽  
Marina Seixas Pereira ◽  
Claudio Roberto Duarte ◽  
...  

Drill cuttings generated by oil and gas drilling process are incorporated into the drilling fluid to ensure an efficient drilling and solids removal. The drilling rigs have a separation system accountable for separating drill cuttings and drilling fluids. Microwave drying is a new technology of separation that has been studied as an alternative to the currently drill cuttings dryer used. The results obtained in preliminary studies showed that this microwave drying is sensitive to different oxides presents into the rock. Thus, this study aimed to describe the microwave heating kinetics of some rocks in order to verify the interaction of oxides with electromagnetic waves. For this, the oxide contents of the rocks were determined by X-ray Fluorescence and different rocks were heated in a microwave heating unit. The results showed that the relationship between the temperature and heating time is exponential and depends on the rock oxide contents. It was found that the iron oxides may be unstable at microwave and rocks with high levels of magnesium oxides and sulfates tend to be good absorbers of microwave. Rocks containing high levels of calcium, silicon, titanium, barium and chloride (NaCl) are not good absorbers of microwave. It was also noted that faster solid heating, lesser the efficiency of microwave drying.


Author(s):  
William William ◽  
Sjahrul Meizar Nasri

Introduction: Benzene is a carcinogenic compound commonly found in drilling fluid, a chemical used in oil and gas drilling operations. Benzene exposure to workers is known to cause acute and/or chronic disease. Adequate control measures shall be identified and implemented to prevent the adverse health effects of benzene from the utilization of drilling fluid. Methods: This study measured benzene concentrations at several locations, above the drilling rig, which has the potential risk of benzene vapor exposure. From the measurement results, if the threshold limit value was exceeded, LEV was proposed to be installed and the effectiveness of LEV at each location would be assessed. A two-tailed t-test was used with a confidence level of 95% (α=0.05) to measure the effectiveness of LEV. Results: In several areas, benzene concentration exceeded TLV-TWA, and LEV was installed in those areas as control measures. In this study, it was found that LEV was not always effective in reducing the concentration of benzene in some areas. Conclusion: Drilling fluid was essential for drilling activity, and this could cause benzene vapor to contaminate the working area. The installation of the LEV shall consider the type of containment through which the drilling fluid flows to ensure the mitigation measures are effective to reduce the concentration of benzene in the air that may be exposed to workers.Keywords: benzene, drilling fluid, exhaust ventilation


Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Mujtaba Asad ◽  
Fahad Sherwani ◽  
Razali Bin Hassan ◽  
Zafarullah Sahito ◽  
Najmonnisa Khan

Purpose Oil and gas industries play a major role for the growth of world economy, and drilling operation is considered as most important and hazardous procedure at the same time for oil and gas drilling crew because of the lack of effectual and user-friendly safety and health teaching and learning aids with updated knowledge and training capability. According to the previous studies, there is an urgent industrial need for user interactive technological aid for enhancing the teaching and learning of oil and gas drilling crew and safety officials at onshore and offshore drilling domains to fulfill the requirements of fourth industrial and educational revolutions. Therefore, this proposed virtual reality (VR)-based Hazard Free Operation (HAZFO Expert 2.0) teaching and learning aid to reduce the workplace risk and hazards to enhance the vestibule and experiential learning performance of oil and gas drilling process at Pakistani drilling industries. Design/methodology/approach In this proposed product based study for interactive teaching and learning application for industry, sequential explanatory research design will be adopted to prevent the accidents according to the modern technologies in this era of IR 4.0. Whereas, for the development of VR-based educational aid for Pakistani oil and gas industries, Autodesk 3ds Max, visual studio and MySQL software’s will be used. Findings This new concept of VR-based interactive educational aid (HAZFO Expert 2.0) for accident prevention at oil and gas drilling industries will be based on potential hazards and their suitable controlling measures for onshore and offshore drilling sites. Practical implications VR-based interactive educational aid for oil and gas workforce will facilitate the health and safety professionals for the elimination of potential hazards associated with oil and gas drilling activities to the next level of identification of hazards which has been identified in HAZFO Expert 1.0 at onshore and offshore drilling sites. Originality/value This proposed VR-based interactive educational aid for safe drilling process will be the first visual teaching and e-learning technology which covers all onshore and offshore drilling operations in Pakistani oil and gas industries and provides effective hazard controlling strategies to overcome challenging industrial hazards.


2013 ◽  
Vol 868 ◽  
pp. 601-605 ◽  
Author(s):  
Nan Nan Wang ◽  
Yong Ping Wang ◽  
Dong Zhang ◽  
Hui Min Tang

Micro foam drilling fluid has irreplaceable advantages in reservoir protection, drilling speed, improve the cementing quality and leak plugging, especially suitable for the "three low" Daqing peripheral oilfield Haita area. Indoor the foaming agent, foam stabilizing agent were screened, Preferably choose the efficient composite foaming agent, stabilizer and thickener, the drilling fluid system is transformed into micro foam drilling fluid system. And evaluate the inhibition, anti temperature, anti pollution (anti clay, calcium, anti kerosene) reservoir protection capability, The micro foam drilling fluid leakage, oil reservoir protection, speed up mechanism and micro foam drilling fluid rheological characteristics were studied, Set up a specific rheological model of Micro Foam Drilling fluid, According to the characteristics of Gulong oilfield,R&D the calculation software of Micro Foam drilling fluid density changes with the temperature, pressure and provide guidance for safe drilling. Field application shows that the system has the advantages of simple preparation,convenient maintenance, easy transformation, drilling fluid properties can meet the requirements of drilling technology, To ensure the safe, fast, and high quality drilling of oil and gas,reduce pollution,improve the productivity of a single well.


2014 ◽  
Vol 625 ◽  
pp. 526-529 ◽  
Author(s):  
Lim Symm Nee ◽  
Badrul Mohamed Jan ◽  
Brahim Si Ali ◽  
Ishenny Mohd Noor

It is an open secret that currently oil and gas industry is focusing on increasing hydrocarbon production through underbalanced drilling (UBD) and finding ways to ensure the drilling process is less harmful to the environment. Water-based biopolymer drilling fluids are preferred compared to oil based drilling fluids owing to the fact that it causes less pollution to the environment. This paper investigates the effects of varying concentrations of environmentally safe raw materials, namely glass bubbles, clay, xanthan gum and starch concentrations on the density of the formulated biopolymer drilling fluid to ensure that it is suitable for UBD. As material concentrations were varied, the density for each sample was measured at ambient temperature and pressure. Results showed that the final fluid densities are within acceptable values for UBD (6.78 to 6.86 lb/gal). It is concluded that the formulated water-based biopolymer drilling fluid is suitable to be used in UBD operation.


2020 ◽  
pp. 193-193
Author(s):  
Jinjiang Liu ◽  
Wenlin Wu ◽  
Peng Qian ◽  
Shuo Wang

In the gas drilling design, accurate prediction of wellbore temperature profile is very crucial. Different from liquid drilling fluid, physical and thermo-physical parameters of gases are sensitive to the change of pressure and temperature, at the same time, the change of these parameters will react against the wellbore temperature and pressure. Based on the energy conservation principle, a temperature-pressure coupling calculation model was established to predict the gas temperature profile during gas drilling process. The model is solved by cycle coupling iteration method. The calculation shows that annular temperature rises sharply near the wellhead, drops sharply at bottom hole and is a little higher than the formation temperature in other places. Without considering the influence of friction heat, calculated temperature is lower than the actual temperature. Temperature trends are the same under different pump rates and larger pump rate leads to larger temperature range at the wellhead and at bottom hole. Compared with the pump rate, bit nozzle size has more influence on the temperature drop range. Temperature reduction increases from 31.3?C to 57.2?C while bit nozzle size decreases from 539 mm2 to 339 mm2.


2021 ◽  
Vol 43 (4) ◽  
pp. 476-485
Author(s):  
S. S. Timofeeva ◽  
N. A. Popova

The oil and gas industry belongs to the high risk activity. Today, the enterprises engaged in this field including oil and gas production facilities implement a risk-based approach, which involves the identification of risk criteria and risk categories, timely reassessment of risks based on updated and formed normative legal documents. In this regard, the purpose of this research is the analysis of the management system of occupational hazards and measures to minimize them using innovations and innovative solutions at the oil and gas production facilities in the Irkutsk region of the Russian Federation. The object of the study is working conditions and occupational hazards at the oil and gas production facilities of two leading oil companies of the Irkutsk region: they are the Irkutsk branch of Gazprom Bureniye LLC and the Irkutsk branch of RN-Bureniye LLC. As a result possible reasons for the discrepancy between the physical factors of the working environment of oil industry workers when pеrforming works on oil rigs are analyzed. Professional risks having been assessed, a register of high-risk professions and hazardous areas of technological processes under the operation of oil and gas drilling rigs has been compiled. The professions studied in this paper are classified as high-risk and medium-risk ones. It is found out that the negative effects of moving machines and mechanisms, general vibration, local vibration, noise, low air temperatures in winter are unacceptable. To minimize unacceptable risks, it is proposed to introduce a low-cost technology for visualizing hazardous areas on a drilling rig with the installation of proven innovative safety barriers in addition to the related training of employees.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3151 ◽  
Author(s):  
Han Cao ◽  
Zheng Zhang ◽  
Ting Bao ◽  
Pinghe Sun ◽  
Tianyi Wang ◽  
...  

The interaction between drilling fluid and shale has a significant impact on wellbore stability during shale oil and gas drilling operations. This paper investigates the effects of the drilling fluid activity on the surface and osmotic hydration characteristics of shale. Experiments were conducted to measure the influence of drilling fluid activity on surface wettability by monitoring the evolution of fluid-shale contact angles. The relationship between drilling fluid activity and shale swelling ratio was determined to investigate the osmotic hydration behavior. The results indicate that, with increasing drilling fluid activity, the fluid–shale contact angles gradually increase—the higher the activity, the faster the adsorption rate; and the stronger the inhibition ability, the weaker the surface hydration action. The surface adsorption rate of the shale with a KCl drilling fluid was found to be the highest. Regarding the osmotic hydration action on the shale, the negative extreme swelling ratio (b) of the shale was found to be: bKCl < bCTAB < bSDBS. Moreover, based on the relationship between the shale swelling ratio and drilling fluid activity, shale hydration can be divided into complete dehydration, weak dehydration, surface hydration, and osmotic hydration, which contributes to the choice of drilling fluids to improve wellbore stability.


Sign in / Sign up

Export Citation Format

Share Document