scholarly journals Corrigendum to "Simulation and Optimization of Lead-Based Perovskite Solar Cells with Cuprous Oxide as a P-type Inorganic Layer [J. Nig. Soc. Phys. Sci. 1 (2019) 72–81, https://doi.org/10.46481/jnsps.2019.13]"

Author(s):  
Eli Danladi ◽  
M. Y. Onimisi ◽  
S. Garba ◽  
R. U. Ugbe ◽  
J. A. Owolabi ◽  
...  

The version in the original Article has an error in the name of the principal author Eli Danladi which was given incorrectly as D. Eli. We highly regret this.

Author(s):  
D. Eli ◽  
M. Y. Onimisi ◽  
S. Garba ◽  
R. U. Ugbe ◽  
J. A. Owolabi ◽  
...  

The hole transporting material (HTM) is responsible for selectively transporting holes and blocking electrons which also plays a crucial role in the efficiency and stability of perovskite solar cells (PSCs). Spiro-MeOTAD is the most popular material, which is expensive and can be easily affected by moisture content. There is a need to find an alternative HTM with sufficiently high resistance to moisture content. In this paper, the influence of some parameters with cuprous oxide (Cu2O) as HTM was investigated using a solar cell capacitance simulator (SCAPS). These include the influence of doping concentration and thickness of the absorber layer, the effect of thickness of ETM and HTM as well as electron affinities of ETM and HTM on the performance of the PSCs. From the obtained results, it was found that the concentration of dopant in the absorber layer, the thickness of ETM and HTM and the electron affinity of HTM and ETM affect the performance of the solar cell. The cell performance improves greatly with the reduction of ETM electron affinity and its thickness. Upon optimization of parameters, power conversion efficiency for this device was found to be 20.42% with a current density of 22.26 mAcm-2, voltage of 1.12 V, and fill factor of 82.20%. The optimized device demonstrates an enhancement of 58.80%, 2.25%, 20.40% and 30.23% in PCE, Jsc, FF, and Voc over the initial cell. The results show that Cu2O in lead-based PSC as HTM is an efficient system and an alternative to spiro-MeOTAD.


2021 ◽  
Vol 60 (19) ◽  
pp. 10608-10613
Author(s):  
Jian Du ◽  
Jialong Duan ◽  
Xiya Yang ◽  
Yanyan Duan ◽  
Quanzhu Zhou ◽  
...  

2015 ◽  
Vol 6 (9) ◽  
pp. 1666-1673 ◽  
Author(s):  
Jiewei Liu ◽  
Sandeep Pathak ◽  
Thomas Stergiopoulos ◽  
Tomas Leijtens ◽  
Konrad Wojciechowski ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2592 ◽  
Author(s):  
Funeka Matebese ◽  
Raymond Taziwa ◽  
Dorcas Mutukwa

P-type wide bandgap semiconductor materials such as CuI, NiO, Cu2O and CuSCN are currently undergoing intense research as viable alternative hole transport materials (HTMs) to the spiro-OMeTAD in perovskite solar cells (PSCs). Despite 23.3% efficiency of PSCs, there are still a number of issues in addition to the toxicology of Pb such as instability and high-cost of the current HTM that needs to be urgently addressed. To that end, copper thiocyanate (CuSCN) HTMs in addition to robustness have high stability, high hole mobility, and suitable energy levels as compared to spiro-OMeTAD HTM. CuSCN HTM layer use affordable materials, require short synthesis routes, require simple synthetic techniques such as spin-coating and doctor-blading, thus offer a viable way of developing cost-effective PSCs. HTMs play a vital role in PSCs as they can enhance the performance of a device by reducing charge recombination processes. In this review paper, we report on the current progress of CuSCN HTMs that have been reported to date in PSCs. CuSCN HTMs have shown enhanced stability when exposed to weather elements as the solar devices retained their initial efficiency by a greater percentage. The efficiency reported to date is greater than 20% and has a potential of increasing, as well as maintaining thermal stability.


2019 ◽  
Vol 12 (1) ◽  
pp. 230-237 ◽  
Author(s):  
E. Yalcin ◽  
M. Can ◽  
C. Rodriguez-Seco ◽  
E. Aktas ◽  
R. Pudi ◽  
...  

Herein, we studied the use of two different Self Assembled Monolayers (SAMs) made of semiconductor hole transport organic molecules to replace the most common p-type contact, PEDOT:PSS, in PiN methyl ammonium lead iodide perovskite solar cells (PSCs).


2018 ◽  
Vol 153 ◽  
pp. 104-108 ◽  
Author(s):  
Guifang Han ◽  
Wen Han Du ◽  
Bao-Li An ◽  
Annalisa Bruno ◽  
Shin Woei Leow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document