scholarly journals Removal of Various Contaminants by Highly Porous Activated Carbon Sorbent Derived from Agricultural Waste Produced in Malaysia - A Review

Author(s):  
N.Z. Zabi ◽  
W.N. Wan Ibrahim ◽  
N.S. Mohammad Hanapi ◽  
N. Mat Hadzir

This paper aims to review recent studies in preparing activated carbons from different types of agricultural wastes in Malaysia and how it can help Malaysia manage agricultural waste. It can be seen that most biomasses can be used as precursors to produce activated carbon for a wide range of pollutants and this adsorbent can be modified to optimally function depending on the types of pollutants. Under optimum dosages, modification through chemical activation using acidic, basic, or drying agents has significant effects on the selectivity of the analyte adsorption. The acidic activating agent causes the activated carbon to have negatively charged acid groups which enable it to adsorb cationic adsorbate while the basic activating agent causes the adsorbent to have a positive surface charge and enable it to adsorb anionic adsorbate.

RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64704-64710 ◽  
Author(s):  
Guofu Ma ◽  
Dongyang Guo ◽  
Kanjun Sun ◽  
Hui Peng ◽  
Qian Yang ◽  
...  

Cotton-based porous activated carbons (CACs) are prepared through a simple chemical activation method using cotton fiber as carbon source and ZnCl2 as activating agent.


Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 300 ◽  
Author(s):  
Dongdong Liu ◽  
Xiaoman Zhao ◽  
Rui Su ◽  
Zhengkai Hao ◽  
Boyin Jia ◽  
...  

At present, the preparation of highly porous graphitic activated carbons (HPGACs) using the usual physical and chemical activation methods has met a bottleneck. In this study, HPGACs are directly synthesized from lignite at 900 °C. The whole process is completed by a microwave pretreatment, a graphitization conversion of the carbon framework at a low temperature using a small amount of FeCl3 (10–30 wt%), and a subsequent physical activation using CO2. Consequently, the dispersed and mobile iron species, in the absence of oxygen functional groups (removed during the microwave pretreatment), can greatly promote catalytic graphitization during pyrolysis, and, as an activating catalyst, can further facilitate the porosity development during activation. The as-obtained AC-2FeHLH-5-41.4(H) presents a low defect density, high purity, and specific surface area of 1852.43 m2 g−1, which is far greater than the AC-HLH-5-55.6(H) obtained solely by physical activation. AC-2FeHLH-5-41.4(H) as a supercapacitor electrode presents an excellent performance in the further electrochemical measurements. Such a convenient and practical method with low cost proves a scalable method to prepare HPGACs from a wide range of coal/biomass materials for industrial scale-up and applications.


2019 ◽  
Vol 70 (2) ◽  
pp. 410-416 ◽  
Author(s):  
Tagne Tiegam Rufis Fregue ◽  
Ioana Ionel ◽  
Anagho Solomon Gabche ◽  
Alin-Cristian Mihaiuti

Avocado seeds based activated carbon was prepared using chemical activation method which consisted of potassium hydroxide treatment. The main factors influencing the preparation of activated carbons at the calcination temperature, the concentration of the activating agent and the duration of calcination were investigated. One used as a mathematical model the response surface methodology to correlate the response. The significant factors identified by the analysis of variance (ANOVA) through the t-test, the Pareto diagram and the diagrams of surfaces. The optimum avocado seeds based activated carbon was obtained by using calcination temperature of 450 oC, concentration of activating agent of 0.3 mol/L and time of calcination of 3.0 h, which resulted to an avocado seed based activated carbon iodine number remove of 1142.1 mg/g and yield of 75.09 %, by mass. The best activated carbon obtained under the previous conditions and the raw biomass was characterized by Fourier transform infrared and Scanning Electronic Microscope.


2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Ephraim Vunain ◽  
Joel Brian Njewa ◽  
Timothy Tiwonge Biswick ◽  
Adewale Kabir Ipadeola

AbstractTwo biomass agricultural waste materials; rice husks (RH) and potato peels (PP) were used as precursors for preparation of activated carbons by chemical activation using phosphoric acid for adsorption of hexavalent chromium [Cr(VI)] from tannery effluents. The prepared rice husk (RH–AC) and potato peel activated carbon (PP–AC) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. Adsorption experiments were performed by varying pH, agitation speed, contact time, adsorbent dose and initial metal ion concentration. Freundlich, Langmuir and Temkin isotherms were used to analyze the equilibrium data obtained at different adsorption conditions. It was found that the adsorption isotherms were well fitted by the Freundlich equation and the adsorption process was found to follow pseudo-second-order rate kinetics. Adsorption results obtained show a maximum Cr(VI) uptake being attained at pH 2.0, with chromium removal efficiency of 99.88% and 99.52% for RH–AC and PP–AC, respectively. RH–AC and PP–AC are effective adsorbent for the removal of chromium(VI) ions from wastewater.


2021 ◽  
Vol 2049 (1) ◽  
pp. 012051
Author(s):  
E Taer ◽  
Nursyafni ◽  
Apriwandi ◽  
R Taslim

Abstract The energy cost-effective/free-environmental pollution concerns have an interest in bio-waste materials for the production of porous activated carbon, especially as electrode material for electrochemical energy storage devices such as li-ion batteries and supercapacitors. In this study, Averrhoa bilimbi leaf wastes were selected as a porous activated carbon source for sustainable electrode material supercapacitor. Porous activated carbons were prepared by chemical activation of 0.5 ml−1 sodium hydroxide solution at an optimum temperature of 800 °C pyrolyze in an environment of N2 and CO2 gases. The monolith coin shape of activated carbon is maintained by optimizing the self-adhesive properties of the precursor without the addition of adhesive materials. All coin monoliths feature a turbostratic to highly amorphous carbon structure. Furthermore, the relatively high monolith dimensional shrinkage of 42.00% initiated the development of a better pore framework carbon. In symmetric supercapacitors, electrochemical behavior confirmed a high specific capacitance of 149.04 F/g at a constant density of 1.0 A/g. Moreover, the maximum energy density was found of 10.50 Whkg−1 at an optimum power density of 116.35 W/kg in an aqueous electrolyte of 1 ml−1 Na2SO4. With bio-recycled waste, relatively easy preparation, and high electrochemical properties, porous activated carbon based on Averrhoa bilimbi leaf has great potential as a sustainable electrode material for supercapacitor energy storage applications.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2951
Author(s):  
Mirosław Kwiatkowski ◽  
Jarosław Serafin ◽  
Andy M. Booth ◽  
Beata Michalkiewicz

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.


2012 ◽  
Vol 1 (3) ◽  
pp. 75 ◽  
Author(s):  
W.D.P Rengga ◽  
M. Sudibandriyo ◽  
M Nasikin

Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that supports renewable energy. Keywords: adsorption; bamboo; formaldehyde; modified activated carbon; nano size particles


2015 ◽  
Vol 3 (3) ◽  
pp. 1504-1512 ◽  
Author(s):  
Duanyi Zhang ◽  
Jiao Yin ◽  
Jiquan Zhao ◽  
Hui Zhu ◽  
Chuanyi Wang

2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Riry Wirasnita ◽  
Tony Hadibarata ◽  
Abdull Rahim Mohd Yusoff ◽  
Zainab Mat Lazim

An oil palm empty fruit bunch-derived activated carbon has been successfully produced by chemical activation with zinc chloride and without chemical activation. The preparation was conducted in the tube furnace at 500oC for 1 h. The surface structure and active sites of activated carbons were characterized by means of Fourier transform infrared spectrometry and field emission scanning electron microscopy. The proximate analysis including moisture content, ash content, bulk density, pH, and pH at zero charge was conducted to identify the psychochemical properties of the adsorbent. The results showed that the zinc chloride-activated carbon has better characteristics compared to the carbon without chemical activation.  


Sign in / Sign up

Export Citation Format

Share Document