Β-CELL ACTIVATION AND ANTI-Β-CELL THERAPY FOR ANKYLOSING SPONDILITIS

Author(s):  
N.X. Yaminova ◽  
B.X. Toshpolatov ◽  
G.K. Shokirova ◽  
A.A. Soliev
2006 ◽  
Vol 15 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Barjor Gimi ◽  
Lara Leoni ◽  
Jose Oberholzer ◽  
Mark Braun ◽  
Jose Avila ◽  
...  

2009 ◽  
Vol 28 (4) ◽  
pp. 417-428 ◽  
Author(s):  
Andreas Wiederkehr ◽  
Kyu-Sang Park ◽  
Olivier Dupont ◽  
Nicolas Demaurex ◽  
Tullio Pozzan ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Melissa M Berrien-Elliott ◽  
Michelle Becker-Hapak ◽  
Amanda F. Cashen ◽  
Miriam T. Jacobs ◽  
Pamela Wong ◽  
...  

NK cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from two independent clinical trial cohorts treated with MHC-haploidentical NK cell therapy for relapsed/refractory AML revealed that cytokine support by systemic IL-15 (N-803) resulted in reduced clinical activity, compared to IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T cell numbers in patients treated with IL-15/N-803, compared to IL2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T cell activation and proliferation, compared to IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived ML NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15.


2006 ◽  
Vol 290 (2) ◽  
pp. E308-E316 ◽  
Author(s):  
Rui Takahashi ◽  
Hisamitsu Ishihara ◽  
Akira Tamura ◽  
Suguru Yamaguchi ◽  
Takahiro Yamada ◽  
...  

Abnormal glucagon secretion is often associated with diabetes mellitus. However, the mechanisms by which nutrients modulate glucagon secretion remain poorly understood. Paracrine modulation by β- or δ-cells is among the postulated mechanisms. Herein we present further evidence of the paracrine mechanism. First, to activate cellular metabolism and thus hormone secretion in response to specific secretagogues, we engineered insulinoma INS-1E cells using an adenovirus-mediated expression system. Expression of the Na+-dependent dicarboxylate transporter (NaDC)-1 resulted in 2.5- to 4.6-fold ( P < 0.01) increases in insulin secretion in response to various tricarboxylic acid cycle intermediates. Similarly, expression of glycerol kinase (GlyK) increased insulin secretion 3.8- or 4.2-fold ( P < 0.01) in response to glycerol or dihydroxyacetone, respectively. This cell engineering method was then modified, using the Cre- loxP switching system, to activate β-cells and non-β-cells separately in rat islets. NaDC-1 expression only in non-β-cells, among which α-cells are predominant, caused an increase (by 1.8-fold, P < 0.05) in glucagon secretion in response to malate or succinate. However, the increase in glucagon release was prevented when NaDC-1 was expressed in whole islets, i.e., both β-cells and non-β-cells. Similarly, an increase in glucagon release with glycerol was observed when GlyK was expressed only in non-β-cells but not when it was expressed in whole islets. Furthermore, dicarboxylates suppressed basal glucagon secretion by 30% ( P < 0.05) when NaDC-1 was expressed only in β-cells. These data demonstrate that glucagon secretion from rat α-cells depends on β-cell activation and provide insights into the coordinated mechanisms underlying hormone secretion from pancreatic islets.


Author(s):  
Pradip Bajgain ◽  
Supannikar Tawinwung ◽  
Lindsey D’Elia ◽  
Sujita Sukumaran ◽  
Norihiro Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document