scholarly journals Effect of Zeolite on the Compaction Properties and California Bearing Ratio (CBR) of Cemented Sand

2021 ◽  
Vol 11 (3) ◽  
pp. 229-239
Author(s):  
Ghasem Norouznejad ◽  
Issa Shooshpasha ◽  
Seyed Mohammad Mirhosseini ◽  
Mobin Afzalirad

This research investigates the impact of zeolite on the compaction properties and California Bearing Ratio (CBR) of cemented sand. For this purpose, firstly, sand, cement (2, 4, 6, and 8% by the sand dry weight), and zeolite (0%, 30%, 60%, and 90% of cement content, as a replacement material) are mixed. Then, various cylindrical samples with sizes of 101×116 mm and 119×152 mm are prepared for compaction and CBR tests, respectively. After curing for 28 days, the samples are tested according to the standards of compaction and CBR tests. The results depict that the use of zeolite reduces Maximum Dry Density (MDD) while it increases Optimum Moisture Content (OMC) of cemented sand. Furthermore, the inclusion of zeolite up to 30% of cement content contributes to the highest CBR values due to the pozzolanic and chemical reactions. Finally, some correlations with high correlation coefficients are proposed between the CBR and MDD of zeolite-cemented sand.

2021 ◽  
Vol 47 (1) ◽  
pp. 156-163
Author(s):  
Oluremi Johnson Rotimi ◽  
Bamigboye Gideon Olukunle ◽  
Afolayan Olaniyi Diran ◽  
B. Iyanda Olayinka ◽  
A. Bello Usman

Effect of spent calcium carbide (SCC) on index and strength properties of lateritic soil at differ- ent compactive efforts was assessed in this study as potential means of improving the geotechnical properties of the subsoil as well as disposing of SCC as waste. SCC was admixed with the soil using 0 to 10 % by dry weight of soil at an incremental rate of 2%. The following tests were carried out on the samples: specific gravity, Atterberg limit, particle size distribution, compaction, and California bearing ratio (CBR). Compaction and California Bearing Ratio (CBR) tests were carried out using British Standard light (BSL), West African Standard (WAS), and British Standard heavy (BSH) on both the natural and stabilized soil samples. From the investigation, atterberg limits show a reduction in the plasticity index with increasing content of SCC. The maximum dry density of the soil decreased with increasing SCC content and increased with an increase in compactive energies (BSL<WAS<BSH), while and optimum moisture content (OMC) increased correspondingly. Also, soaked and unsoaked CBR values of the stabilized lateritic soil showed an increase in strength with higher compactive effort, and SCC content up to 4% SCC addition and after that decreased in value. Based on these results, spent calcium carbide improved the geotechnical properties of this lateritic soil, and 4% SCC is recommended for its stabilization as subgrade material for pavement construction, thereby serving as an effective method of disposing SCC towards promoting a green and sustainable environment.


Phosphogypsum is a solid by-product waste generated from phosphoric acid industry. This paper presents the effectiveness of mixing Phosphogypsum with crushed limestone to use this blend as road base course. Seven percentages (0, 5, 10, 15, 20, 25 and 30%) of Phosphogypsum were replaced from crushed limestone mixture dry weight. The influence of blending Phosphogypsum with crushed limestone was evaluated by preparing and testing mixture with several percentages of phosphogypsum and crushed limestone to determine some of their properties as maximum dry density, optimum moisture content, un-soaked California bearing ratio, soaked California bearing ratio, swelling percent and California bearing ratio after a series of wetting-drying cycles. The results indicate that the mechanical characteristics were improved by adding phosphogypsum to the crushed limestone mixtures


2020 ◽  
Vol 39 (3) ◽  
pp. 721-731
Author(s):  
J.A. Oke ◽  
N.O. Obaji ◽  
K.J. Osinubi

A reddish-brown laterite was treated with up to 14 % oil palm empty fruit bunch ash (EFBA) by dry weight of soil and compacted with the British Standard light, BSL (or Standard Proctor) compactive effort. Index, compaction, strength and durability tests as well as microanalysis of the natural and stabilized specimens were carried out. The index, compaction characteristics (maximum dry density, MDD and optimum moisture content, OMC) and strength properties (California bearing ratio, CBR and unconfined compressive strength, UCS) were improved with higher EFBA treatment. Peak un-soaked and soaked CBR values of 70.0 and 45.0 %, as well as peak UCS strengths of 253.0, 462.0 and 577 kN/m2 at 7, 14 and 28 days curing were recorded at 8 % EFBA content. Based on the CBR specification specified in the Nigerian General Specifications, the laterite optimally treated with 8 % EFBA compacted with the BSL compactive effort can be used as a fill material in the construction of low-volume traffic pavement. The benefit of the EFBA application is primarily the reduction of the adverse environmental impact of the oil palm empty fruit bunch waste. Keywords: California bearing ratio, durability, laterite, oil palm empty fruit bunch ash, microanalysis, stabilization


2021 ◽  
Vol 50 (11) ◽  
pp. 3181-3191
Author(s):  
Ghasem Norouznejad ◽  
Issa Shooshpasha ◽  
Seyed Mohammad Mirhosseini ◽  
Mobin Afzalirad

It is well known that in geotechnical engineering, soil stabilization using cement is one of the appropriate approaches for enhancing soil characteristics. With respect to zeolite, its impact on the characteristics of cemented soil has not been fully evaluated. Thus, in the current research, a set of laboratory tests including standard Proctor compaction and direct shear tests (DSTs) considering four cement contents (2, 4, 6, and 8% of sand dry weight) and four zeolite contents (0%, 30%, 60%, and 90% of cement percentage as a replacement material) was carried out. The results indicated that the zeolite reduced Maximum Dry Density (MDD) while it increased value of Optimum Moisture Content (OMC) of cemented sand. Through the DSTs, it has been found that the replacement of cement by zeolite up to 30%, leads to the highest values of shear strength parameters due to the occurrence of pozzolanic and chemical reactions, particularly the production of higher amounts of calcium aluminate and calcium silicate hydrates in comparison with zeolite-free samples.


2021 ◽  
Author(s):  
Attah Fakeye ◽  
Olusegun Ige ◽  
Olufemi Ogunsanwo

California Bearing Ratio (CBR) is an important parameter used in designing pavement layers in road construction but testing this parameter requires time, labor, and huge cost. The study therefore applies multivariate approach to evaluate CBR based on contrasted geotechnical parameters along Ilorin-Lokoja highway. The results obtained showed that the migmatite-gneiss-derived soils are slightly more fines (< 0.075 mm; 7.4–59.6%), more plastic (PI; 1.6–39%), and have low strength (MDD = 1.8 mg/m3; CBR = 29.0%) than the metasediments (11–57.7%, 2.0–30%, 1.6 mg/m3, 23.6%) and older granite soils (8.2–32.7%, 2.6–13.4%, 1.7 mg/m3, 27.8%), respectively. The principal component analysis (PCA) revealed three major components (eigenvalues >1) which accounted for 83.8% of the total variance at the rate of 33.4, 14.7, and 11.4%. Major contributing variables for the components were fines (R = 0.87), plasticity index (R = 0.7), and coarse sand (R = 0.67%). Spatial distribution of these groups established interplay of sediment-gradation and moisture-connection evident in hierarchical cluster analysis that revealed patterns of homogeneity and soil relationships. Regression analysis established five models from predictor variables such as fines, activity, free swell, liquid and plastic limits, weighted plasticity index, optimum moisture content, and maximum dry density with the coefficient of determination (R2 = 0.33) and root mean square error (RMSE) of 7.80.


2018 ◽  
Vol 34 ◽  
pp. 01012 ◽  
Author(s):  
Mohammed Ali Mohammed Al-Bared ◽  
Aminaton Marto ◽  
Indra Sati Hamonangan Harahap ◽  
Fauziah Kasim

Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.


2018 ◽  
Vol 250 ◽  
pp. 01008
Author(s):  
Tuan Noor Hasanah Tuan Ismail ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Ismail Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
...  

Soils at many sites do not always have enough strength to bear the structures constructed over them and some of the soil may need to be stabilized in order to improve their geotechnical properties. In this paper, routine laboratory tests were critically carried out to investigate the efficacy of lignin in improving the strength behaviour of the soils. Two different soil samples (laterite and kaolin) were studied and mixed with different proportions of lignin (2% and 5% of dry weight of soil), respectively. Unconfined Compressive Strength (UCS) characteristics evaluated in this study were done on samples at their maximum dry density and optimum moisture content (obtained from compaction tests). The UCS tests on all the specimens were carried out after 0, 7, 15, 21 and 30 days of controlled curing. The research results showed that the addition of lignin into kaolin reduced its maximum dry density while giving progressively higher optimum moisture content. Contrarily, with the laterite soil, both maximum dry density and optimum moisture content simultaneously increased when lignin was added into the soils. The UCS results showed that the the stabilized laterite with 2% lignin continued to gain strength significantly at a fairly steady rate after 7 days. Unfortunately, lignin did not show a significant effect in kaolin.


2020 ◽  
Vol 10 (3) ◽  
pp. 36-53
Author(s):  
Dr. Zaid Hameed Majeed ◽  
Eng. Kadhim Jawad Aubais ◽  
Dr. Mohd Raihan Taha

The design foundations  of storage tanks for oil industry experiences significant problems due to the widespread occurrence of weak and compressible soil which resulted in foundation failure. In this study, soft soils were taken from two locations and mixed with three types of nanoparticles which were nano-alumina (nano Al2O3), nano-copper (nano CuO), and nano-magnesium (nano MgO). Nanomaterials were incorporated in small percentage (less than 1%) by dry weight of soil. The tested geotechnical characteristics included the water content, dry density, and the unconfined compressive strength. The results showed significant enhancements in the maximum dry density and unconfined compressive strength. The level of enhancement depended on the type of nanomaterials and the contents. Improved strength and hardening properties were shown with the utilization of nano CuO material in comparison to the soil samples with the other nanomaterials additions, with its optimum addition of 0.7% provided an increment rate of 662.7% while the optimum nano CuO which is about 1% showed a 532% increasing rate in the compressive strength of S1 soil. It was noted that the maximum dry density and unconfined compressive strength enhanced with the increase in the nanoparticles content until reaching a percentage in which the strength decreased. The optimum content of the nano MgO was 0.3% while the optimum nano Al2O3 content was about 0.3% for soil S1 and was about 0.1% for soil S2. The presence of nanomaterials in excessive contents caused agglomeration of particles which had negative influences on mechanical characteristics of the soils. Generally, the incorporation of finer particles like nanoparticles even with low amount would improve the geotechnical characteristics of soils with the consideration of the potential environmental benefits, these combined admixtures are intended to lower the cost and become a more sustainable and environmental alternative for soil stabilization


2019 ◽  
Vol 14 (2) ◽  
pp. 95-106
Author(s):  
Oluwaseun Adetayo ◽  
Olugbenga Amu ◽  
Sunday Alabi

AbstractThis study investigated the suitability of pulverized snail shell (PSS) as partial replacement of cement stabilized soil in foundation constructions. Preliminary and engineering tests were carried out on the soil samples. The optimum cement content fixed at 11% in correlation to Unified Soil Classification System, the PSS was introduced at varying percentages of 2%, 4%, 6%, 8% and 10%. Results revealed that, addition of PSS and 11% cement to lateritic soil caused a reduction in both liquid limits and plasticity index and an increased in plastic limits for all samples. Engineering tests showed the maximum dry density at optimum cement increased from 1493.34 ± 103.58 kg.m−3 to 1632 ± 435.81 kg.m−3 for sample A; 1476.77 ± 367.51 kg.m−3 to 1668 ± 202.58 kg.m−3 for sample B; 1460.77 ± 623.58 kg.m−3 to 1651 ± 135.45 kg.m−3 for sample C. The CBR recorded highest value at 4%PSS optimum cement for all samples. The addition of pulverized snail shell increased the strength of cement stabilized lateritic soil for structural foundation construction.


Author(s):  
I. O Ameen

This study investigated the impact of compactive efforts on A-7-5 lateritic soil stabilized with Bamboo Leaf Ash (BLA) mixed with lime. Preliminary tests were conducted on the soil sample for identification and classification. Compaction tests (using British Standard Light (BSL), British Standard Heavy (BSH) and West Africa Standard (WAS) compactive efforts) were performed on the sample in both natural and stabilized states by incorporating 2, 4, 6 and 8% Bamboo Leaf Ash mixed together with 1, 2, and 3% lime by weight of soil sample. Maximum dry density (MDD) increased to 1766 kg/m3 at 3% lime and 6% BLA, 1818 kg/m3 at 3% lime and 8% BLA and 1866 kg/m3 at 3% lime and 2% BLA while the optimum moisture content decreased to 12.70% at 3% and lime 8% BLA, 11.40% at 2% lime 6% BLA and 11.12% at 3% lime and 2% BLA for BSL, WAS and BSH, respectively. Based on these findings, the addition of lime-BLA enhanced the soil and has a promising prospect for stabilization of lateritic soil.


Sign in / Sign up

Export Citation Format

Share Document