scholarly journals BRIEF EVALUATION OF MASS LOSS INDEX, WATER ABSORPTION AND COMPRESSIVE STRENGTH REVERTIBILITY COEFFICIENTS OF PAPERBRICKS IMMERSED IN WATER

Author(s):  
Akinwande Abayomi

With the need to develop alternative, lightweight cheaper bricks for masonry which will be durable, paperbrick produced with varying cement content of 3 – 18 wt. % and fixed sand content of 20 wt. % were immersed in water for seven days, it was observed that with increasing cement content and curing ages, compressive strength revertibility increased. Weight loss index also reduced with higher cement content and longer curing days and concluded that higher cement content and longer duration periods produce more water durable paperbricks.

2018 ◽  
Vol 10 (10) ◽  
pp. 3769 ◽  
Author(s):  
Victoria García-Vera ◽  
Antonio Tenza-Abril ◽  
Marcos Lanzón ◽  
José Saval

Obtaining durable materials that lengthen the service life of constructions and thereby contribute to sustainability requires research into products that improve the durability of cementitious materials under aggressive conditions. This paper studies the effects of sulfuric acid exposure on four mortar types (control mortar, mortar with nanosilica, mortar with zinc stearate, and mortar with an ethyl silicate coating), and evaluates which of them have better performance against the acid attack. After 28 days of curing, the samples were exposed to a sulfuric acid attack by immersing them in a 3% w/w of H2SO4 solution. Physical changes (mass loss, ultrasonic pulse velocity, open porosity, and water absorption), and mechanical changes (compressive strength) were determined after the sulfuric acid exposure. A scanning electron microscope (SEM) was used to characterize the morphology of the surface mortars after the exposure. The control mortar had the highest compressive strength after the acid attack, although of the four types, the zinc stearate mortar showed the lowest percentage of strength loss. The zinc stearate mortar had the lowest mass loss after the acid exposure; moreover, it had the lowest capillary water absorption coefficient (demonstrating its hydrophobic effect) both in a non-aggressive environment and acid attack.


2013 ◽  
Vol 824 ◽  
pp. 37-43 ◽  
Author(s):  
Manasseh Joel ◽  
Joseph E. Edeh

The effect of three different curing conditions on the compressive strength and water absorption of lateritic interlocking bricks, produced with laterite stabilized with 0 %, 2 %, 4 %, 6 % and 8 % cement content was investigated. The study is aimed at providing an alternative to the conventional method of curing interlocking bricks. The three curing conditions used in the study are A (covering of bricks with tarpaulin after sprinkling with water twice a day) B (complete immersion in water) C (complete covering with air and water tight polythene bags). Laterite used in the production of interlocking bricks was as an A-2-7 soil, using the AASHTO system of soil classification. Compressive strength of bricks increased with cement content and days under the different curing conditions, 28 day optimum compressive strength values of 4.28 N/mm2, 3.67 N/mm2 and 3.67 N/mm2 at 8 % cement content was obtained from bricks using curing condition C B and A respectively. Water absorption value decreased with cement content under the different curing conditions, minimum water absorption values of 2.44 %, 1.68 % and 1.72 % at 8 % cement content was obtained with bricks cured under curing condition A B and C respectively. Based on results of test, curing condition C is recommended for use in the production of cement stabilized interlocking bricks, as this will enhance effective production of interlocking bricks in areas where water is scarce.


2015 ◽  
Vol 68 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Maria Luiza de Souza Rezende ◽  
José Wallace Barbosa do Nascimento ◽  
Gelmires de Araujo Neves ◽  
Heber Carlos Ferreira

Driving rain, considered one of the major factors in the degradation of external seals, may cause esthetic problems and material decomposition to facades and masonry. In the present research, the production of concrete hollow blocks for masonry underwent testing for which 20 years of exposure have been considered, taking into account the annual precipitation in the State of Paraíba. This was assessed by replacing 10, 15 and 20% of cement for metakaolin using as parameter the specimen’s mass loss at end of the test. It has was found that the concrete with metakaolin revealed values of weight loss greater than those of the reference concrete, without metakaolin, and that these values increased as the level of substitution increased. However, for mixtures with lower cement content, the use of 10% by metakaolin promoted results that have been considered similar to the reference. The test results are, therefore, consistent with those reported in literature for assessment studies on actual exposure situations; however, further studies will be developed to correlate the laboratory results obtained and from the resulting exposure to natural weather conditions.


2019 ◽  
Vol 16 (1) ◽  
pp. 44
Author(s):  
Odusote Jamiu Kolawole ◽  
Dosunmu Kayode Stephen

Cartons and chicken feathers are common wastes which we need to dispose in one way or another. Disposal problems associated with these wastes can be solved by processing them into useful products such as insulation and ceiling boards. In this study, chicken feather reinforced ceiling board was developed from waste carton and Portland cement. The quantity of the chicken feather was kept constant at 10% based on previous findings, while the cement and waste carton contents were varied to produce 5 samples of different compositions. The density of the board was found to range between 337.8 and 700.7 kg/m2, while the thickness swelling ranges between 0.81 and 9.02%. Water absorption values of the samples varied between 7.16 and 24.41%, while the compressive strength and modulus of elasticity values varied from 4.8 - 10.3 N/mm2 and 1.03 - 1.60 GPa, respectively. The values of modulus of rupture ranges between 1.34 and 2.2 MPa while the thermal conductivity of the samples ranges from 0.951 to 1.077 W/m.K. Density, compressive strength, modulus of elasticity, modulus of rupture and thermal conductivity of the samples increased as the cement content increased, while the thickness swelling and water absorption decreased with increase in cement content. The results revealed that the properties of ceiling boards developed from 80% cement, 10% carton and 10% chicken feather can compete favorably with most ceiling boards available in the market.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kejia Yuan ◽  
Yingjun Jiang ◽  
Luyao Cai ◽  
Jiangtao Fan ◽  
Changqing Deng ◽  
...  

To analyze the antierosion performance of cement-improved loess (CIL), several influencing factors have been investigated based on two different compaction methods, which include the quasi-static compaction method (QSCM) and the vertical vibration compaction method (VVCM). Then, a prediction model for the cumulative erosion mass loss (CEML) has been established. The effects of erosion on the strength deterioration of CIL were also studied. The results show that, compared with QSCM, specimens compacted using the VVCM have better antierosion performance. As the cement content and the compaction coefficient are increased by 1%, the antierosion performance is increased by 16% and 6.2%, respectively. The eroding time has a significant effect on the antierosion performance of CIL, and the CEML increases linearly with an increase in the eroding time. The compressive strength of CIL decreases significantly due to erosion, and based on the average deterioration degree of the specimens, the design criteria for strength of CIL are proposed, which can provide reference for the design of CIL.


2016 ◽  
Vol 15 (2) ◽  
pp. 51 ◽  
Author(s):  
Martin Ernesto L. Kalaw ◽  
Alvin B Culaba ◽  
Hoc Thang Nguyen ◽  
Khoi Nguyen ◽  
Hirofumi Hinode ◽  
...  

Geopolymers, from industrial wastes such as blast furnace slag, red mud, and coal ash, among others, have emerged as technically viable, economically competitive, and environmentally attractive supplements and even alternatives to ordinary Portland cement (OPC). Furthermore, while the most impact shall be achieved with large-scale use in the general building and structural sector, as replacement or supplement to OPC, the properties of these geopolymers may be optimized for special niche applications. One of these applications is for light weight, low thermal conductivity, heat resistant, and moderate strength cement binder for low rise residential buildings. In this study, compressive strength, heat resistance, volumetric weight, mass loss, water absorption and thermal conductivity of geopolymers formed from mixtures of coal bottom ash and rice hull ash (CBA-RHA) and coal fly ash and rice hull ash (CFA-RHA) with sodium silicate solution (modulus 2.5) as activator were evaluated. Using mixture design and the JMP statistical software, the CBA-RHA combination at a mass ratio of 46% CBA, 32% RHA with 22% WGS gave properties at maximum desirability of 17.6 MPa compressive strength, 1640 kg/m3 volumetric weight, 273 kg/m3 water absorption, 28 MPa compressive strength after high temperature exposure (1000oC for 2 hours) with 4.4% mass loss, and 0.578 W/m-K thermal conductivity. On a performance basis, even as the geopolymers are formed as paste, these properties fall within the standards for lightweight OPC based-concrete with strength requirements for residential buildings. The low thermal conductivity and higher strength after high temperature exposure vis-à-vis OPC are additional advantages for consideration.


Author(s):  
Farah Nora Aznieta Abdul Aziz ◽  
Sani Mohammed Bida ◽  
Noor Azline Mohd Nasir ◽  
Mohd Saleh Jaafar

Various research studies have been conducted in an effort to improve the mechanical properties of concretes and mortars containing waste tire particles using chemicals and additives which lead to increase cost. This approach presents an economical and sustainable method, through adding oil palm fruit fiber (OPFF) at 0.5%, 1%, and 1.5% by mass of cement content into the matrix and pre-treating the tire crumb aggregate (0-40%) by volume with cement, in order to improve the properties of the composite. Density, compressive strength and water absorption measurements were conducted on the mortar specimens. Results showed the addition of 0.5% OPFF in 10% treated tire crumb mortar was discovered to give the best improvement in the compressive strength of mortar modified with treated tire crumb.


2021 ◽  
Vol 887 ◽  
pp. 536-541
Author(s):  
N.P. Lukuttsova ◽  
A.A. Pykin ◽  
S.N. Golovin ◽  
P.A. Artamonov

The optimal compositions of fine-grained concrete (FGC) with two-level reinforcement with fiber are determined via the extreme modelling of experimental data based on the Scilab engineering and scientific computing environment. At the macro level brass plated fibre of the wave profile FSW LV 15/0.3 made of steel grade 70-85 with the fiber length of 15 mm and the diameter of 0.3 mm was used for reinforcement. At the micro-level the halloysite nanotubes NN-RTE 200 with the particle sizes from 0.05 to 5 microns were applied. Having calculated the models the designed program Extr.sce determined the extrema of the required characteristics of fine-grained concrete Max_z and their coordinates max_x and max_y, corresponding to the contents of the brass plated fiber (x) and halloysite nanotubes additive (y). The graphic dependences of the compressive strength, bending strength and water absorption of fine-grained fiber concrete on the content of brass plated fibre and halloysite nanotubes additive with minimum, average and maximum cement content in it in the form of contour and 3d graphs of the interpolation surface are obtained. Two-level reinforcement of FGC, optimized by the program Extr.sce, proved that fine-grained concrete with 10% of brass plated fibre, 20% of halloysite nanotubes additives, and cement content of 600 kg had the maximum compressive strength of 70.26 MPa. In order to obtain FGC with maximum bending strength (17.43 MPa), there should be 5% of brass plated fibre, 10% of halloysite nanotubes additives, and 600 kg of cement in it. The fine-grained concrete without any reinforcement additives will have the minimum water absorption (3%).


2017 ◽  
Vol 26 (2) ◽  
pp. 234-240
Author(s):  
Jakub Jura ◽  
Małgorzata Ulewicz

Paper presents the possibility of using fly ash from the combustion of two types biomass in fluidized bed boiler to modifications cement mortars composition. The influence of the use of ashes on their mechanical and physical properties (compressive strength, frost resistance, water absorption) of cement mortars. In research part of standarized sand was replaced by fly ash from the combustion of wood with coconut husks and wood with sunflower in the amount of 10, 20 and 30% by weight of cement. The addition of ash, depending on the composition, increase the compressive strength about 17%, decrease a reduction compressive strength after frost resistance tests to 0,5% and slightly increases weight loss and absorbency.


Sign in / Sign up

Export Citation Format

Share Document