Realization and Control Of Multilevel Inverter With GSA Tuned Pi Controller

2021 ◽  
Vol 30 (4) ◽  
Author(s):  
R Niraimathi ◽  
R Seyezhai
Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1092 ◽  
Author(s):  
Sunddararaj ◽  
Rangarajan ◽  
Gopalan

The utilization of plug-in electric vehicles (PEV) has started to garner more attention worldwide considering the environmental and economic benefits. This has led to the invention of new technologies and motifs associated with batteries, bidirectional converters and inverters for Electric Vehicle applications. In this paper, a novel design and control of chopper circuit is proposed and configured with the series and parallel connection of the power electronic based switches for two-way operation of the converter. The bidirectional action of the proposed converter makes it suitable for plug-in electric vehicle applications as the grid is becoming smarter. The DC–DC converter is further interfaced with the designed multilevel inverter (MLI). The reduced switches associated with the novel design of MLI have overcome the cons associated with the conventional inverters in terms of enhanced performance in the proposed design. Further, novel control strategies have been proposed for the DC–DC converter based on Proportional Integral (PI) and Fuzzy based control logic. For the first time, the performance of the entire system is evaluated based on the comparison of proposed PI, fuzzy, and hybrid controllers. New rules have been formulated for the Fuzzy based controllers that are associated with the Converter design. This has further facilitated the interface of bidirectional DC–DC converter with the proposed MLI for an enhanced output voltage. The results indicate that the proposed hybrid controller provides better performance in terms of voltage gain, ripple, efficiency and overall aspects of power quality that forms the crux for PEV applications. The novelty of the design and control of the overall topology has been manifested based on simulation using MATLAB/SIMULINK.


Author(s):  
Trong-Thang Nguyen

<p>In this study, the author analyzes the advantages and disadvantages of multi-level inverter compared to the traditional two-level inverter and then chose the suitable inverter. Specifically, the author analyzes and designs the three-level inverter, including the power circuit design and control circuit design. All designs are verified through the numerical simulation on Matlab. The results show that even though the three-level inverter has a low number of switches (only 12 switches), but the quality is very good: the total harmonic distortion is small; the output voltage always follows the reference voltage.</p>


Author(s):  
D. Ganesh ◽  
S.MD. Saleem Naveed ◽  
M. Kalyan Chakravarthi

Aquaculture is major occupation for the humans living at coastal areas. The fresh water cultivation of the certain species is prominent in tropical and sub-tropical climates. Here the proposed work shows the relation-ship between the growth of the certain species of marine habitats and the factors affecting their growth with respect to the medium of their living. Advancement of embedded systems in aquaculture leads to new innovations of monitoring and controlling the various parameters. Here the embedded system based application is used, through which the monitoring and controlling of the light is done with the help of LabVIEW based PI controller as well as Fuzzy controller for the effective and healthy growth of the marine habitat. The Designed controllers are energy efficient based controller for controlling the Light Source (LS) via appropriate lighting control levels. The controlling and managing of the system is based on the present light intensity with the help of virtual controller. The proposed work involves the designing and implementation of PI controller and the fuzzy controller for the real time setup to monitor and control the process for optimal and feasible solution.


2020 ◽  
Vol 29 (13) ◽  
pp. 2030011
Author(s):  
Jammy Ramesh Rahul ◽  
Chinmay Kumar Das ◽  
Kirubakaran Annamalai ◽  
Veeramraju Tirumala Somasekhar

Impedance source-based multilevel inverters are becoming popular for emerging power generation technologies such as fuel cells, photovoltaic, and wind turbines. It is one of the most promising power electronic interfaces for single stage DC/AC conversion with inherent buck-boost capability. Therefore, in this paper, an extensive review of emerging impedance source-based multilevel inverter (Z-MLI) topologies is presented. These topologies are developed by the combination of impedance source network and multilevel inverter (MLI) with the merits of high voltage gain, enhanced reliability due to shoot-through immunity, improved input voltage regulation, reduced filter size, and better quality of supply. Most of the recent Z-MLI topologies are based on quasi-Z-source network which operates with continuous input current. In order to identify a suitable topology, an exhaustive comparison is made with various configurations of Z-MLIs in terms of component count, boost gain, switching stress, and control complexity.


Sign in / Sign up

Export Citation Format

Share Document