scholarly journals Translating Research to Practice on Individual and Collective Mathematics and Science Identity Formation: Pedagogical Recommendations for Teachers

2019 ◽  
Vol 1 (4) ◽  
Author(s):  
Rebecca Hite ◽  
Mona Tauber

Recruiting students to science and mathematics fields continues to be a nationwide issue, resulting in a dearth of individuals to fill present and future science and math careers. Novel interventions, especially in the K-12 space, call for a move from content acquisition to formation of individuals’ identity to foster involve science and math interest and persistence. Identity research has evidenced results, yet greater communication is needed between the research and practitioner communities to realize the potential of cultivating collective STEM identifies in the classroom. In this paper, we bridge these spaces by describing the potential affordances beyond individual identity formation to that of collective (classroom level) identity formation for K-12 teachers to consider for their math and science students, respectively. Specifically exploring how traditional K-12 classroom structures may reinforce stereotypes hindering collective mathematics and science identity formation, whereas reform-oriented classroom structures (that employ legitimate peripheral participation within a community of practice) enable them. Last, to aid practitioners who wish to engage in reform efforts, we recommend pedagogical interventions to promote opportunities for students to collectively co-construct skills specific to mathematics and science communities as a strategy to foster collective mathematics and science identities. Collective identity formation can provide K-12 classroom teachers pedagogical strategies for additional opportunities or enhanced and experiences for students to co-construct and reinforce individual identities in math and science.

2007 ◽  
Vol 8 (1) ◽  
pp. 1-51 ◽  
Author(s):  
Diane F. Halpern ◽  
Camilla P. Benbow ◽  
David C. Geary ◽  
Ruben C. Gur ◽  
Janet Shibley Hyde ◽  
...  

Amid ongoing public speculation about the reasons for sex differences in careers in science and mathematics, we present a consensus statement that is based on the best available scientific evidence. Sex differences in science and math achievement and ability are smaller for the mid-range of the abilities distribution than they are for those with the highest levels of achievement and ability. Males are more variable on most measures of quantitative and visuospatial ability, which necessarily results in more males at both high- and low-ability extremes; the reasons why males are often more variable remain elusive. Successful careers in math and science require many types of cognitive abilities. Females tend to excel in verbal abilities, with large differences between females and males found when assessments include writing samples. High-level achievement in science and math requires the ability to communicate effectively and comprehend abstract ideas, so the female advantage in writing should be helpful in all academic domains. Males outperform females on most measures of visuospatial abilities, which have been implicated as contributing to sex differences on standardized exams in mathematics and science. An evolutionary account of sex differences in mathematics and science supports the conclusion that, although sex differences in math and science performance have not directly evolved, they could be indirectly related to differences in interests and specific brain and cognitive systems. We review the brain basis for sex differences in science and mathematics, describe consistent effects, and identify numerous possible correlates. Experience alters brain structures and functioning, so causal statements about brain differences and success in math and science are circular. A wide range of sociocultural forces contribute to sex differences in mathematics and science achievement and ability—including the effects of family, neighborhood, peer, and school influences; training and experience; and cultural practices. We conclude that early experience, biological factors, educational policy, and cultural context affect the number of women and men who pursue advanced study in science and math and that these effects add and interact in complex ways. There are no single or simple answers to the complex questions about sex differences in science and mathematics.


2021 ◽  
Vol 7 ◽  
pp. 237802312110019
Author(s):  
Yingyi Ma ◽  
Shiyang Xiao

Researchers emphasize the role of math and science identities in science, technology, engineering, and mathematics (STEM) education. However, little is known about whether these identities might evolve during college; likewise it is not known how changes in math and science identities are associated with switching majors between STEM and non-STEM fields. This study addresses these questions. With data from the Pathways through College Study, this study revealed that science identity changes matter more than math identity changes in their association with the decision to switch majors. Most notably, underrepresented racial minority women are the most vulnerable in terms of decreasing science identity and the associated probabilities of leaking out of STEM. The authors also find evidence that Asian students are the least sensitive to their science identity drop. These findings have significant policy implications with regard to STEM choice and attainment.


Author(s):  
Binsen Qian ◽  
Harry H. Cheng

In this article, C-STEM Studio, a platform for hands-on integrated learning of Computing, Science, Technology, Engineering and Mathematics (STEM) with robotics, is presented. C-STEM Studio integrates many technologies, software, and curriculum that K-12 educators can use in their classroom. Ch, a C/C++ interpreter, provides an environment for computing. Linkbot Labs, Ch Linkbot Controller, and Ch Robot Controller allow teachers to utilize the robotics, such as Linkbots and Lego Mindstorms NXT and EV3, to help teach concepts in mathematics and science. RoboSim and RoboBlockly are simulation environments that allow students without physical robots to learn with virtual robots. Teachers can also teach embedded systems with Ch Arduino package, designed atop Ch. Also, easy-to-use resources explorers are built in the C-STEM Studio so that teachers and students can access teaching resources, students homework and materials come with those software. Finally, we provided a solution for Chromebook users to run C-STEM Studio through Raspberry Pi.


2019 ◽  
Vol 9 (4) ◽  
pp. 250
Author(s):  
Gabriel Burks ◽  
Jennifer R. Amos

A national need exists to effectively engage women and people categorized as minorities in science, technology, engineering, and mathematics (STEM) fields and career paths. Given the minimal existence of standards and accreditation boards for engineering design and holistic engineering practice in K–12 contexts, we must better understand how said engineering design and holistic engineering practice affects the learning and identity formation of K–12 students. Here, 50 rising 9th–12th grade girls are exposed to either a socio-ethics enhanced engineering curriculum or a standard engineering curriculum through a week-long STEM summer camp. Qualitative methods are used to conduct a thematic analysis on the engineering language used by students in each curriculum group. Significant differences in language and attitudes towards engineering and the practice of STEM subjects is observed through the incorporation of ethics and humanities into a standard model engineering curriculum. The study presented in this paper demonstrates that students have a tendency towards describing scientific ideas through abstract terms, while a group who participated in the social science integrated camp tended to describe scientific ideas using social-emotional terms. Lastly, students who participated in the camp with integrated social sciences displayed an expanded view and sense of responsibility for the society for which their science is developed to serve. These results could have implications on how STEM subjects are communicated to attract and sustain student interest.


Author(s):  
Larysa Kovryk-Tokar

Every nation is quite diverse in terms of his historical destiny, spiritual priorities, and cultural heritage. However, voluntary European integration, which is the final aim of political integration that began in the second half of the twentieth century from Western Europe, provided for an availability of large number of characteristics in common in political cultures of their societies. Therefore, Ukraine needs to find some common determinants that can create inextricable relationship between the European Community and Ukraine. Although Ukrainian culture is an intercultural weave of two East macrocivilizations, according to the author, Ukraine tends to Western-style society with its openness, democracy, tolerance, which constitute the basic values of Europeans. Keywords: Identity, collective identity, European values, European integration


2021 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Andrea C. Burrows ◽  
Mike Borowczak ◽  
Adam Myers ◽  
Andria C. Schwortz ◽  
Courtney McKim

This study compares three pre-collegiate teacher professional learning and development (PLD) integrated science, technology, engineering, and mathematics (STEM) experiences framed in astronomy. The study is set in the western United States (USA) and involves 60 pre-collegiate teachers (in the USA these are K-12 teachers) over the course of three years (June 2014–May 2017). During the PLDs, astronomy acted as a vehicle for pre-collegiate STEM teachers to increase their STEM content knowledge as well as create and implement integrated STEM classroom lessons. The authors collected quantitative and qualitative data to address five research questions and embraced social constructionism as the theoretical framework. Findings show that STEM pre-collegiate teachers are largely engaged with integrated STEM PLD content and embrace astronomy content and authentic science. Importantly, they need time to practice, interpret, translate, and use the integrated STEM content in classroom lessons. Recommendations for PLD STEM teacher support are provided. Implications of this study are vast, as gaps in authentic science, utilizing astronomy, PLD structure, and STEM integration are ripe for exploration.


2017 ◽  
Vol 15 (3) ◽  
pp. 327-340 ◽  
Author(s):  
Fatimah Ahmad ◽  
Heather Greenhalgh-Spencer

This paper argues for a more complex literature around gender and math performance. In order to argue for this complexity, we present a small portion of data from a case study examining the performance of Kuwaiti students on the Trends in International Mathematics and Science Study and on Kuwait national math tests. Westernized discourses suggest that girls have a harder time in math classes; these discourses frame and are reified by prominent literature and practices within the field of math education research that suggest that women and girls need help in order to reach their potential in math. These Westernized discourses stand in contrast to the discourses in Kuwait that normalize women and girls as outperforming boys in all subjects – including all science, technology, engineering and mathematics subjects. As our study shows, the reality is more complex. And, while the reality is more complex, we yet lack the discourses to understand this complexity.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Ahmad Rezvan ◽  
H. M. Ramakrishne Gowda ◽  
Lancy D’Souza

Paternal attitudes, beliefs and behaviors that appear as family pattern or parenting styles play a key role in personality development and stabilizing the identity of adolescents. The present study assesses parenting styles and identity formation status of adolescents studying in and around Mysore city. A total of 400 adolescents (200 early and 200 late adolescents) were randomly selected covering Mysore city and nearby rural areas, of which equal number among were male and female adolescents and also equal number of them were from urban and rural areas. They were provided with Parental authority questionnaire (PAQ) developed by Buri (1991) and Aspects of Identity Questionnaire – IV (AIQ – IV) developed by Sampson (1978). PAQ measured perceived parenting styles. The AIQ scale measured personal, Relational Social and Collective areas of identity formation. The collected data were, coded and analyzed using SPSS software. The data was analyzed by Two-way ANOVA to find significant difference if any, in the developmental stages, area of living as well as gender of the participants. Results revealed that, adolescents with authoritarian Parenting styles had higher personal identity formation than adolescents with permissive and authoritarian parenting styles. Developmental stage showed significant influence on all components of identity-Personal, Relational, Social and Collective, where in early stage adolescents had higher identity than adolescents at later stage. In general, this study showed that the developmental stages had considerable effect on the collective identity formation in both early and late adolescents.


2015 ◽  
Vol 1 (1) ◽  
pp. 45-58
Author(s):  
Teruni Lamberg ◽  
Nicole Trzynadlowski

STEM (science, technology, engineering and mathematics) education has been gaining increasing nationwide attention. While the STEM movement has ambitious goals for k-12 education, a lack of shared understanding exists of what STEM is as well as how to implement STEM in the elementary classroom. This study investigates how seven elementary teachers in three STEM academy schools conceptualize and implement STEM in their classrooms. Teacher interviews were conducted. The findings reveal that the majority of teachers believe that STEM education involves integrating STEM subject areas. STEM activities consisted of student-led research and reading activities on STEM topics. Two teachers described STEM as involving “hands-on” science activities. Teachers at each STEM academy school conceptualized and implemented STEM differently. How STEM was implemented at each school was based on how teachers interpreted STEM and the resources they had access to. The STEM coaches played a central role in supporting the elementary teachers to plan and implement lessons. Teachers relied on them for ideas to plan and teach STEM lessons. The results of this study indicate that as more schools embrace the STEM movement, a unified understanding and resources are needed to support teachers.


Sign in / Sign up

Export Citation Format

Share Document