scholarly journals Morphology and Optimisation of Impact Energy of Weldment of High Strength Low Alloy Steel

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Saheed Olanisebe ◽  
James Abu ◽  
Sunday Albert Lawal ◽  
Evudiovo Egbe ◽  
Oyewole Adedipe

Morphology and optimisation of impact energy of weldment of low alloy-high strength steel were investigated in this work.  The study involved the use of design of experiment via Taguchi method based on three variables, each having three levels. Minitab 16 software was used for the analysis of variance (ANOVA) and signal to noise (S/N) ratio of the impact energy. Direct current electrode positive (DCEP) was used in the electric manual metal arc (MMA) welding. The input parameters at the three levels were current (60 A, 70 A, and 80 A), metal thickness (5 mm, 7 mm, 9 mm) and root gap (2.0 mm, 2.5 mm, 3.0 mm).  It was found that the input variables significantly affected the microstructure of the weldment in all the nine experiments conducted.  Optimization of welding parameters was carried out  to obtain the optimal input values required to give the optimal impact energy of weldment.  The optimal values for the input values were  80 A for current, 9 mm thickness and 2.5 mm root gap and these were substituted in the regression equation to obtain the optimal impact energy. It was equally observed that the input variables affected the microstructure of each of the nine samples.

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Misbahu A Hayatu ◽  
Emmanuel T Dauda ◽  
Ola Aponbiede ◽  
Kamilu A Bello ◽  
Umma Abdullahi

There is a growing interest for novel materials of dissimilar metals due to higher requirements needed for some critical engineering applications. In this research, different dissimilar weld joints of high strength low alloy (HSLA) and 316 austenitic stainless steel grades were successfully produced using shielded metal arc welding (SMAW) process with 316L-16 and E7018 electrodes. Five variations of welding currents were employed within the specified range of each electrode. Other welding parameters such as heat inputs, welding speeds, weld sizes, arc voltages and time of welding were also varied. Specimens for different weld joint samples were subjected to microstructural studies using optical and scanning electron microscopes. The impact toughness test was also conducted on the samples using Izod impact testing machine. The analysis of the weld microstructures indicated the presence of type A and AF solidification patterns of austenitic stainless steels. The results further showed that the weld joints consolidated with E7018 electrode presented comparatively superior impact energy to the weldments fabricated by 316L-16 electrode. The optimum impact energy of E7018-weld joints (51J) was attained at higher welding heat inputs while that of 316L-16-weld joints (35J) was achieved at lower welding heat inputs, which are necessary requirements for the two electrodes used in the experiment. Hence, the dissimilar weld joints investigated could meet requirement for engineering application in offshore and other critical environments.Keywords—Dissimilar metal weld, heat input, impact toughness, microstructures


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


2013 ◽  
Vol 746 ◽  
pp. 462-466
Author(s):  
Jin Hyun Koh ◽  
Bok Su Jang

The Ti addition effect on the characteristics of weld metal, such as impact energy, microstructure and nonmetallic inclusions, was investigated to develop a suitable gas metal arc welding wire for the high strength of TMCP (Thermo Mechanical Control Process)-600 steel. The fraction of acicular ferrite which was known to be a favorable weld metal microstructure for toughness was increased with Ti content from 0.002% to 0.025%, The impact energy of weld metal was increased whereas the ductile to brittle transition temperature was decreased with increasing Ti content. The size of nonmetallic inclusion was decreased while the density of inclusions was decreased with increasing Ti content. It was found that Ti content on the weld metal toughness had a plus effect by increasing the fraction of acicular ferrite in the weld metal microstructure.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Vaishak NL ◽  
Suhas Suhas ◽  
Vilas K Bhosle ◽  
Prashanth T

The effect of welding parameters (current, electrode diameter) on the impact of low carbon steel specimens was investigated in this work. Two different geometries namely square butt welded joint and double V welded joint were created. The welding operation was carried out at three different current for welding currents of 90, 110 and 130 amps and electrode diameters of 2.5, 3.2 and 4mm respectively. A Charpy impact testing machine was used to evaluate the impact of the welded samples. It was observed that a low current of 90 Amps for all the welding electrode diameters produced high impact values for both the welding geometries. Also, the 3.2 mm electrode diameter was found to be more suitable for welding the square butt and the double V geometry as it yielded higher impact values. Additionally, the double V geometry showed better performance when compared to the square butt geometry for all the combinations of welding currents and electrode diameters.


2011 ◽  
Vol 704-705 ◽  
pp. 1128-1132
Author(s):  
Di Xin Yang ◽  
Yuan Fang Sun

Hydraulic support is an important part of fully mechanized equipments. The constructional steels of hydraulic support with international advanced level mainly adopt the high-strength welding structural steel with its tensile strength of more than 700~1000MPa.This paper analyzes the chemical compositions features of S890 high-strength low alloy steel for 900MPa grade.The Influence of welding parameters,peak temperature and on the microstructures and mechanical properties of welding HAZ of S890 high-strength low alloy steel were investigated by thermo-simulated tests, The influence of welding heat input on the mechanical behaviors of the welded joint was also investigated. The results show that the microstructures of S890 steel change from tempered martensite to bainite and a little ferrite , pearlitic when welding heat input changes from low to high, and accompany the austenite grains coarsening ,so the impact toughness and hardness of welding HAZ at lower peak temperatures and shorter are higher than that at higher peak temperature and long . Welding HAZ produced by the second weld bead will overlap partially with the HAZ produced by the first weld bead. In this area, primitive microstructure tempers again or partial re-phase transformations and re-cools,but the area involved in the overlap is limited,so the influence on the properties of S890 steel is not obvious. In covered arc welding,the influence on the welded join strength of S890 steel is not distinct when heat input change in a certain scope, but the plasticity of the welded join falls off steeply as heat input increases. Keywords: S890 steel; high-strength low alloy steel; weld performance; hydraulic supports


2012 ◽  
Vol 724 ◽  
pp. 127-130
Author(s):  
Dong Fang Du ◽  
Jie Liu ◽  
Guo Ping Li ◽  
Jin Ming Liu

In this paper, SAF2507 duplex stainless steel (DSS) was welded by GTAW with ER2594 as filler wire, and Ar + N2 as shielding gas. The results show that, with increasing the content of N2 in the shielding gas, the amount of austenite in weld metal increase, the micro-hardness drops and impact energy increases; the use of Ar +2 ~ 3% N2 welding parameters, the microstructure and mechanical properties of welded joints are the best, the austenitic rates and impact energy of weld metals are 51%~53% and 75~88 J, respectively, and the welding process is easy to control; when the content of N2 reach 5%, the impact energy of weld metal decreases obviously and the welding arc is unstable.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1430
Author(s):  
Xiaoyan Wu ◽  
Pengcheng Xiao ◽  
Shujing Wu ◽  
Chunliang Yan ◽  
Xuegang Ma ◽  
...  

The microstructure, precipitates, and austenite grain in high-strength low-alloy steel were characterized by optical microscope, transmission electron microscope, and laser scanning confocal microscopy to investigate the effect of Mo on the toughness of steel. The microstructure was refined and the toughness was enhanced after the addition of 0.07% Mo in steel. The addition of Mo can suppress the Widmanstätten ferrite (WF) formation and promote the transformation of acicular ferrite (AF), leading to the fine transformed products in the heat-affected zone (HAZ). The chemical composition of precipitates changed from Nb(C, N) to (Nb, Mo)(C, N) because of the addition of Mo. The calculated lattice misfit between Nb(C, N) and ferrite was approximately 11.39%, while it was reduced to 5.40% for (Nb, Mo)(C, N), which significantly affected the size and number density of precipitates. A detailed analysis of the precipitates focusing on the chemical composition, size, and number density has been undertaken to understand the contribution of Mo on the improvement of steel toughness.


2020 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

Abstract The destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


Sign in / Sign up

Export Citation Format

Share Document