DNA Hybridization Detection based on Plasmonic Photonic Crystal Fiber

2021 ◽  
Vol 36 (3) ◽  
pp. 229-234
Author(s):  
Mohammad Azab ◽  
Abed Nasr ◽  
Salah Obayya ◽  
Mohamed Hameed

A novel design of surface plasmon (SP) photonic crystal fiber (PCF) for DNA hybridization detection is proposed and analyzed. The suggested biosensor relies on plasmonic D-shaped PCF configuration. Accordingly, the core guided mode in the silica core is coupled with the SP mode near the plasmonic layer. The resonance wavelength is sensitive to the DNA hybridization process. Therefore, the suggested bio-sensor is studied to maximize the DNA hybridization detection sensitivity by adjusting the structural geometrical parameters. The numerical results are obtained using full vectorial finite element method with perfectly matched layer boundary condition and non-uniform meshing capabilities. The reported D-shaped PCF offers high wavelength sensitivity of 405.4 nm/RIU with a corresponding amplitude sensitivity of 5.65 RIU−1. Consequently, the applications based on DNA classification can be potentially implemented by the reported biosensor.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5150 ◽  
Author(s):  
Nan Chen ◽  
Min Chang ◽  
Xinglian Lu ◽  
Jun Zhou ◽  
Xuedian Zhang

A hexagonal photonic crystal fiber (PCF) sensor with a dual optofluidic channel based on surface plasmon resonance (SPR) effect is proposed. The sensor characteristic is numerically explored by software integrated with the finite element method (FEM). The numerical results show that, when the analyte refractive index (RI) varies from 1.32 to 1.38, high linearity between resonance wavelength and analyte RI is obtained and the value of adjusted R2 is up to 0.9993. Simultaneously, the proposed sensor has maximum wavelength sensitivity (WS) of 5500 nm/RIU and maximum amplitude sensitivity (AS) of 150 RIU−1, with an RI resolution of 1.82 × 10−5 RIU. Besides, owing to a simple structure and good tolerance of the proposed sensor, it can be easily fabricated by means of existing technology. The proposed sensor suggests promising applications in oil detection, temperature measurement, water quality monitoring, bio-sensing, and food safety.


2021 ◽  
pp. 2150306
Author(s):  
Pibin Bing ◽  
Guifang Wu ◽  
Zhongyang Li ◽  
Sheng Yuan ◽  
Hongtao Zhang ◽  
...  

The photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) technology has flexibility in birefringence, negative dispersion, effective area and nonlinearity and has become a widely studied new fiber. However, there are many problems in the practical application of the sensor, such as complex structure design, not easy to prepare, the low sensitivity of sensing detection, narrow range of refractive index detection of analytes, which greatly limits the application range and functions of PCF sensors. To solve the above problems, this paper adopts a structure with a longer vertical distance between the D-shaped large air hole channel and the core. The energy of the core conduction mode is better limited by the cladding to transmit in the core, and the plasma mode is enhanced, which can effectively increase the wavelength sensitivity. In this paper, the hexagonal double-clad air hole structure and the D-type structure are combined to ensure a simple structure and facilitate manufacturing and production, while the wavelength sensitivity is also greatly improved. The wavelength sensitivity of the dual sample channel can reach up to 16200 nm/RIU and 15800 nm/RIU, which has broad application prospects in the field of high-sensitivity detection.


2021 ◽  
Author(s):  
Sanfeng Gu ◽  
Wei Sun ◽  
Meng Li ◽  
Ming Deng

Abstract A dual-core and dual D-shaped photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor with silver and Aluminum Nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36~1.42. In addition, a maximum wavelength sensitivity of 13400 nm/RIU with the corresponding RI resolution of 7.46×10-6 RIU is obtained in the RI range of 1.41~1.42. The proposed sensor with the merits of high sensitivity, low cost and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring and biochemical analysis.


Author(s):  
Monika Kiroriwal ◽  
Poonam Singal

Surface plasmon resonance (SPR)-based single-core photonic crystal fiber (PCF) biosensor is investigated with external gold coating. All the geometrical parameters such as a gold layer, an analyte layer, a lattice period and cladding air holes are optimized to enhance the sensing ability of the sensor by introducing the finite element method. The designed sensor is able to achieve the highest amplitude sensitivity (AS) of 2258.95 RIU[Formula: see text] with an acceptable refractive index sensitivity (RIS) of 6000 nm/RIU over the analyte refractive index (ARI) span of 1.31–1.40. This sensor can detect a slight index alteration in the sensing medium using a resolution of [Formula: see text] and a high figure of merit (FOM) of 79.01. With the enhanced modal behavior with simple geometry, the resulting sensor can be suitable for real-time monitoring in biological, biochemical and bio-imaging applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 845 ◽  
Author(s):  
Dror Malka ◽  
Gilad Katz

A novel eight-channel demux device based on multicore photonic crystal fiber (PCF) structures that operate in the C-band range (1530–1565 nm) has been demonstrated. The PCF demux design is based on replacing some air-hole areas with lithium niobate and silicon nitride materials over the PCF axis alongside with the appropriate optimizations of the PCF structure. The beam propagation method (BPM) combined with Matlab codes was used to model the demux device and optimize the geometrical parameters of the PCF structure. The simulation results showed that the eight-channel demux can be demultiplexing after light propagation of 5 cm with a large bandwidth (4.03–4.69 nm) and cross-talk (−16.88 to −15.93 dB). Thus, the proposed device has great potential to be integrated into dense wavelength division multiplexing (DWDM) technology for increasing performances in networking systems.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950397 ◽  
Author(s):  
Pibin Bing ◽  
Shichao Huang ◽  
Jialei Sui ◽  
Hua Wang ◽  
Yongen Ren

A sensor based on D-shaped photonic crystal fiber (PCF) with elliptical holes is designed and numerical studied by finite element method (FEM). The refractive index (RI) of analyte can be detected by using surface plasma resonance effect and optical fiber with elliptical holes can solve the phase matching problem. The size of central hole, the major axis of the two elliptical holes near polishing plane in first layer and polishing depth are adjusted to explore the influence of these parameters on wavelength sensitivity and amplitude sensitivity of the sensor. Polishing depth has a great influence on wavelength sensitivity of the sensor. As a result, higher sensitivity is obtained with larger polishing depth in the range of 1.33–1.39 and smaller polishing depth is more suitable with RI changing from 1.39–1.42. The wavelength sensitivity of the designed sensor is 10,200 nm/RIU, which means the designed sensor has a promising application prospect.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550026 ◽  
Author(s):  
Chunfu Cheng ◽  
Yiwen Ou ◽  
Jinye Zhang ◽  
Qinghua Lv ◽  
Jinrong Zhu ◽  
...  

An all-normal dispersion photonic crystal fiber with nearly zero flattened dispersion at 1550 nm is designed for generating high coherent broadband supercontinuum. It is found that an all normal dispersion photonic crystal fiber with nearly zero flattened dispersion at 1550 nm can be obtained by appropriately designing geometrical parameters and optimizing the index of the first ring of air-holes with filling different index liquid of the photonic crystal fiber. The results show that the optimized design photonic crystal fiber for pumping at 1550 nm is suitable for flat broadband and high coherent supercontinuum generation with only 4 kW input peak power in a 40 cm long of the photonic crystal fiber. It is also found the weaker the dispersion effect is, the more advantage to the high coherent broadband supercontinuum generation due to the self-phase modulation.


2014 ◽  
Vol 1 (2) ◽  
pp. 65-69
Author(s):  
Jiten Boruah ◽  
Bhawana Dabas ◽  
Monika Rajput ◽  
R. K. Sinha

In this paper, we present the propagation characteristics of Fluoropolymer based Photonic Crystal Fiber (PCF) exhibiting guiding properties in terahertz region. The variation of effective index of guided mode and dispersion with wavelength in hexagonal lattice Fluoropolymer PCF are investigated by using the fully-vectorial finite element method (FEM).


Sign in / Sign up

Export Citation Format

Share Document