scholarly journals SEED YIELD AND FATTY ACID COMPOSITION IN SESAME (Sesamum indicum L.) AS AFFECTED BY SILICON APPLICATION UNDER A SEMI-ARID CLIMATE

Agrociencia ◽  
2020 ◽  
Vol 54 (3) ◽  
pp. 367-376
Author(s):  
Abdul Manaf ◽  
Mehreen Shoukat ◽  
Ahmad Sher ◽  
Abdul Qayyum ◽  
Ahmad Nawaz

Sesame (Sesamum indicum L.) is a short duration, low input and highly drought tolerant conventional oilseed crop with high edible seed oil contents. This study was aimed to evaluate the response of four sesame genotypes to silicon (Si) application under a semi-arid climate. For this study, we hypothesized that Si application may improve seed yield, oil contents and fatty acid composition in sesame. The experimental design was a two factor-factorial randomized complete block, replicated four times, and the treatments were four sesame genotypes (TS-3, SG-120, SG-169 and SG-170) and three Si levels (0, 22 and 44 kg ha-1). The data was analyzed statistically with the ‘Statistics 8.1’ software. The genotype TS-3 had the highest (p£0.05) seed yield (479.1 kg ha-1), oil content (40.2%), oleic acid (41.8%), and the lowest content of palmitic acid (6.37%) and linoleic acid (38.5%). Silicon application significantly enhanced the seed yield, oil and unsaturated fatty acids (oleic and linoleic acid) contents and reduced the saturated fatty acid (palmitic and stearic acid) over control. The highest seed yield (487.8 kg ha-1), oil contents (38%), oleic acid (40.9%), linoleic acid (41.7%), as well as the lowest palmitic acid (6.49%) and stearic acid (3.66%) were recorded with the application of 44 kg Si ha-1. The seed yield of sesame genotypes followed the order TS-3>SG-120>SG-169>SG-170.

2014 ◽  
Vol 139 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Geoffrey Meru ◽  
Cecilia McGregor

Seed oil percentage (SOP) and fatty acid composition of watermelon (Citrullus lanatus) seeds are important traits in Africa, the Middle East, and Asia where the seeds provide a significant source of nutrition and income. Oil yield from watermelon seed exceeds 50% (w/w) and is high in unsaturated fatty acids, a profile comparable to that of sunflower (Helianthus annuus) and soybean (Glycine max) oil. As a result of novel non-food uses of plant-derived oils, there is an increasing need for more sources of vegetable oil. To improve the nutritive value of watermelon seed and position watermelon as a potential oil crop, it is critical to understand the genetic factors associated with SOP and fatty acid composition. Although the fatty acid composition of watermelon seed is well documented, the underlying genetic basis has not yet been studied. Therefore, the current study aimed to elucidate the quality of watermelon seed oil and identify genomic regions and candidate genes associated with fatty acid composition. Seed from an F2 population developed from a cross between an egusi type (PI 560023), known for its high SOP, and Strain II (PI 279261) was phenotyped for palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Significant (P < 0.05) correlations were found between palmitic and oleic acid (0.24), palmitic and linoleic acid (–0.37), stearic and linoleic acid (–0.21), and oleic and linoleic acid (–0.92). A total of eight quantitative trait loci (QTL) were associated with fatty acid composition with a QTL for oleic and linoleic acid colocalizing on chromosome (Chr) 6. Eighty genes involved in fatty biosynthesis including those modulating the ratio of saturated and unsaturated fatty acids were identified from the functionally annotated genes on the watermelon draft genome. Several fatty acid biosynthesis genes were found within and in close proximity to the QTL identified in this study. A gene (Cla013264) homolog to fatty acid elongase (FAE) was found within the 1.5-likelihood-odds (LOD) interval of the QTL for palmitic acid (R2 = 7.6%) on Chr 2, whereas Cla008157, a homolog to omega-3-fatty acid desaturase and Cla008263, a homolog to FAE, were identified within the 1.5-LOD interval of the QTL for palmitic acid (R2 = 24.7%) on Chr 3. In addition, the QTL for palmitic acid on Chr 3 was located ≈0.60 Mbp from Cla002633, a gene homolog to fatty acyl- [acyl carrier protein (ACP)] thioesterase B. A gene (Cla009335) homolog to ACP was found within the flanking markers of the QTL for oleic acid (R2 = 17.9%) and linoleic acid (R2 = 21.5%) on Chr 6, whereas Cla010780, a gene homolog to acyl-ACP desaturase was located within the QTL for stearic acid (R2 = 10.2%) on Chr 7. On Chr 8, another gene (Cla013862) homolog to acyl-ACP desaturase was found within the 1.5-LOD interval of the QTL for oleic acid (R2 = 13.5%). The genes identified in this study are possible candidates for the development of functional markers for application in marker-assisted selection for fatty acid composition in watermelon seed. To the best of our knowledge, this is the first study that aimed to elucidate genetic control of the fatty acid composition of watermelon seed.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 122
Author(s):  
Lara Abou Chehade ◽  
Luciana G. Angelini ◽  
Silvia Tavarini

The adoption of climate-resilient and resource-use efficient crop species and varieties is a key adaptation action for farmers in the face of climate change. Safflower, an emerging oilseed crop, has been recognized for its high oil quality and its favorable agronomic traits such as drought and cold tolerance, making it particularly suitable to Mediterranean conditions. A 2-year field study was carried out to evaluate the effects of the genotype and growing season on the crop phenology, seed and oil production, macronutrient accumulation and partitioning, and fatty acid composition of spring-sown safflower grown under rainfed conditions. The experiment was conducted during the 2012 and 2013 growing seasons on an alluvial deep loam soil (Typic Xerofluvent) at the Centre for Agri-environmental Research “E. Avanzi” of the University of Pisa (Pisa, Central Italy). Higher seed yield and yield components (plant density, plant height, branching, number of capitula per plant and seeds per capitulum) were found in almost all genotypes when the seeds were sown in mid-March 2012 compared to in late April 2013. More favorable conditions in 2012, i.e., early sowing date, higher precipitation, and quite mild temperatures, led to a better seed and oil yield and greater aboveground biomass and nitrogen uptake, with the highest amounts being removed by straw. Greater seed yield was found to be associated with a greater plant height and a higher number of capitula per plant. Oil content was negatively affected by the higher temperatures and the lower amounts of precipitation that occurred during the 2012 growing season. Seasonal variation in fatty acid composition depended on the genotype. Lower precipitation and higher temperatures during 2013 favored oleic acid content in high linoleic acid genotypes and linoleic acid in medium to high oleic acid genotypes. Among the genotypes, the linoleic-type Sabina and the oleic-type Montola 2000 performed the best in both seasons. The results, besides identifying promising safflower genotypes for spring sowing in the Mediterranean region and for future breeding programs, pointed out the importance of early sowing to contrast unfavorable environmental conditions during seed-filling, thus ensuring higher yields.


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
M. H. Rachmawati ◽  
H. Soetjipto ◽  
A. Ign A. Ign. Kristijanto

Overripe tempe is a food product that used by peoples in Indonesia as a food seasoning. So far, overripe tempe received less attention than fresh tempe and research of overripe tempe is rarely done. The objective of the study is to identify the fatty acid compounds of the  fifth day fermentation overripe tempe oil before and after purification . The overripe tempe oil of fifth day fermentation was extracted with soxhletation method using n – hexane solvent, then it was purified. The various fatty acids  of overripe tempe oil were analyzed by GC – MS. The purification process was done by using H3PO4 0,2% and NaOH 0,1N. The result of the study showed that before purification the oil  was composed of eight compounds  are palmitic acid (13,33%),  linoleic acid (77,57%), stearic acid (6,15%), and the five chemical components, Dasycarpidan – 1 - methanol, acetate ,  oleic acid, 9 - Octadecenamide ,Cholestane - 3, 7, 12, 25 - tetrol, tetraacetate, (3?, 5?, 7?, 12?) and  6, 7 – Epoxypregn – 4 – ene -9, 11, 18- triol - 3, 20 - dione, 11, 18 – diacetate have percentage of areas less than 3%. After purification the oil  was composed of palmitic acid (12,38% ), linoleic acid (80,35 %), stearic acid (5,84%), and 17 – Octadecynoic acid (1,42 %) .


2019 ◽  
Vol 54 (4) ◽  
pp. 367-374
Author(s):  
MO Aremu ◽  
AA Waziri ◽  
FJ Faleye ◽  
AM Magomya ◽  
UC Okpaegbe

There are several underexploited plant seeds or fruits in Nigeria with little information about their chemical composition. To this end a comprehensive study on fatty acid, phospholipids and phytosterols composition of bitter melon (Momordica charaantia) fruit and ebony tree (Diospyros mespiliformis) fruit pulp were determined using standard analytical techniques. The most concentrated fatty acid (%) was linoleic acid in Momordica charantia fruit (45.47) and 44.82 in Diospyros mespiliformis fruit pulp. The increasing order of the concentrated fatty acids in Momordica charantia fruit were: linolenic acid (2.38) < stearic acid (7.52) < oleic acid (20.18) < palmitic acid (23.64) < linoleic acid (45.47) while that of Diospyros mespiliformis fruit pulp were: linolenic acid (5.73) < stearic acid (8.62) < oleic acid (18.95) < palmitic acid (20.88) < linoleic acid (44.82). Arachidonic, arachidic, palmitoleic, margaric, behenic, erucic, lignoceric, myristic, lauric, capric and caprylic acids were present in small quantities with none of them recording up to 1.0% in both of the two samples. The results also showed low concentration of monounsaturated fatty acids (MUFA) (20.41%) in Momordica charantia fruit and 19.13% in Diospyros mespiliformis fruit pulp, and values of polyunsaturated fatty acid (PUFA) were 2.44 and 5.78% for the two samples, respectively. The respective phospholipids composition showed a highest concentration of phosphatidylcholine in Momordica charantia and Diospyros mespiliformis (100.31and 88.12 mg/100 g) while lysophosphatidylcholine and phosphatidic acid were the least concentrate values of 12.62 and 14.52 mg/100 g in Momordicacharantia and Diospyros mespiliformis, respectively. The concentrations of phytosterols were of low values except in sitosterol with values of 153.28 and 119.46 mg/100 g in Momordica charantia and Diospyros mespiliformis, respectively. This study provides an informative lipid profile that will serve as a basis for further chemical investigations and nutritional evaluation of Momordica charantia fruit and Diospyros mespiliformis fruit pulp. Bangladesh J. Sci. Ind. Res.54(4), 367-374, 2019


1980 ◽  
Vol 191 (2) ◽  
pp. 637-643 ◽  
Author(s):  
William W. Christie ◽  
Margaret L. Hunter

The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.


Author(s):  
Deniz Altuntaş ◽  
Hakan Allı ◽  
Erhan Kaplaner ◽  
Mehmet Öztürk

Human being have been consumed mushrooms due to their aroma and flavour. The macro-nutritional properties such as ash, protein fat, carbohydrate and energy and fatty acid ingredients of Lactarius deliciosus (L.) Gray, Lactarius deterrimus Gröger, Lactarius salmonicolor R. Heim & Leclair and Lactarius semisanguifluus R. Heim & Leclair were studied. The results indicate that the moisture was between in the range of 86.8-91.1%, while the ash 5.1-9.2%, and the protein 9.4-19.0%, and the fat 0.6-1.1%, and the carbohydrate 71.8-83.9, and the energy calculated between 372.1-382.6 kcal/100 g dry weights. The major fatty acids were determines as stearic acid, oleic acid, linoleic acid and palmitic acid in the range of 6.68-39.41%, 26.94-47.12%, 9.78-23.85% and 9.7-14.43% respectively.


americanum) [29]. Among wheat, tetraploid durum wheat contained higher FL contents than the U.S. hard winter NSTL shows the highest NL:PoL ratio. wheats. Larsen et al. [66] reported New Zealand wheat flour Among all grains, wheat is the richest in GL, followed FL content ranges of 67-85 mg/10 g (db) for the 1984 crop by triticale, rye, and barley. Millet lipids from P. ameri-and 93-108 mg/10 g (db) for the 1985 wheat crop (Table 4). canum seed [29], corn, and sorghum lipids contain the Ten Greek bread wheat flours [67] contained lipid ranges lowest GL content. However, other researchers [32] report-similar to those in U.S. Kansas flours reported by Chung et ed that GL contents ranged from 6 to 14% for millet lipids al. [61]. Australian scientists [68,69] also investigated their that were extracted by hot water—saturated butanol and wheat FL. Compared with the means of U.S. wheat and acid hydrolysis. flour FL [61], Australian wheats contained substantially In general, PL also are more abundant in wheat, triti-less FL and NL but higher PL. Australian flours contained cale, rye lipids and slightly lower in barley, oat groats, similar FL and NL but still higher PoL content (Table 4). sorghum, and rice. Although corn NSTL were found to have higher PL contents than GL contents, they were very low in PL compared to other grains. Millet NSTL from P. C. Fatty Acid Composition of Grain Lipids americanum seed [29] contains the lowest PL content of All cereal grain lipids are rich in unsaturated fatty acids all the grains. (FA) (Table 5). Palmitic acid (16:0) is a major saturated Wheat flour FL, a minor component, have been report-FA, and linoleic acid (18:2) is a major unsaturated FA for ed to have a significant effect on bread-making. When the all cereals except for brown rice. In brown rice, oleic acid defatted flours were reconstituted with the extracted lipids (18:1) is a major unsaturated FA. The presence of palmi-to their original levels, the PoL fraction of FL but not the toleic acid (16:1) and eicosenoic acid (20:1) is reported NL completely restored loaf volume and crumb grain quite often but usually at levels below 1% of total FA com-[59,60]. Among wheat flour lipids, GL are the best bread position. loaf volume improvers [19-21]. Fatty acid compositions are generally similar for barley, In 1982, Chung et al. [61] reported a range of 177-230 rye, triticale, and wheat lipids. Rye lipids are somewhat mg/10 g (db) for wheat FL contents of 21 HRW wheats higher in linolneic acid (18:3) than those of other cereals. (Table 4). Flours showed 83-109 mg FL, 67-84 mg NL, Oat lipid FA composition is similar to that of brown rice, and 11-27 mg PoL with NL:PoL ratios of 2.5-6.9. Ohm because oats and brown rice are rich in oleic acid. Millet and Chung [62] also investigated the FL contents of flours lipids are generally higher in stearic acid (18:0) than all from 12 commercial hard winter wheat cultivars grown at other cereal lipids. six locations and reported the cultivar mean ranges of There are wide ranges in FA compositions of corn oils 90-109 mg/10 g (db) for total flour FL, 72-85 mg for NL, (Table 6). Jellum [82] reported a range of 14-64% oleic 11-16 mg for GL, 1.7-3.1 mg for monogalactosyldiglyc-acid and 19-71% linoleic acid for the world collection of erides (MGDG), 5.3-6.5 mg for digalactosyldiglycerides 788 varieties of corn (Table 6). The wide ranges in FA com-(DGDG), and 5-7 mg for PL (Table 4). The ratios of NL to position were due to more lines having been examined in PoL were in a much narrower range than those of earlier corn than in any of the other cereal grains [1]. Dunlap et al. work by Chung et al. [61]. This was probably due to a [86,87] reported on corn genotypes with unusual fatty acid smaller variation in the released cultivars used by Ohm compositions (Table 6). They found palmitic acid ranges of and Chung [62]. Samples used by Chung et al. [61] includ-6.3-7.6% and 16.7-18.2% for low and high saturated corn ed some experimental lines. genotypes, respectively. They also reported a range of Bekes et al. [63] investigated 22 hard and 4 soft spring 43.9-46.1% of oleic acids for high oleic acid lines. wheat varieties grown at 3 locations in Canada: varietal Fatty acid composition differs depending on the lipid means ranged from 72 to 134 mg per 10 g (db) flour for extractant (Tables 5 and 6). For example, FL were higher FL, 61-115 mg for NL, 4-11 mg for GL, and 4-9 mg for in both oleic and linoleic acids than the BL of corn and PL (Table 4). There were larger variations in FL contents pearl millet, whereas FL were lower in palmitic acid than for Canadian spring wheats than for U.S. hard winter the BL of millet, oats, and corn. The FA composition of wheats except for GL. Chung [64] showed that U.S. winter NSTL from corn is intermediate to those of FL and BL and spring wheats could not be differentiated by lipid con-based on data complied by Morrison [3]. tents and compositions. Wheat lipid FA compositions for different classes or Unlike the Canadian spring wheats [63], the U.K. soft subclasses are shown in Table 7. The average of 6 HWW winter wheats [65] contained more FL (195-244 mg/10 g, wheats and 14 SWS wheat lipids was lower in palmitic and db) with higher NL content than hard winter wheats stearic acids and higher in linoleic and linolenic acids than (186-210 mg/10 g, db). In general, U.K. hard spring wheats the overall average of 290 wheat lipids. The average FA


2013 ◽  
pp. 45-50
Author(s):  
Ágnes Süli ◽  
Béla Béri ◽  
János Csapó ◽  
Éva Vargáné Visi

In the last decades many researches were made to change the animal product food’s composition. The production of better fat-compound milk and dairy products became a goal in the name of health conscious nutrition. These researches were motivated by the non adequate milk fat’s fatty acid composition. There have been made researches in order to modify the milk’s fatty acids’ composition to reach the expectations of functional foods. With the optimal supplement of the feed can be increased the proportion of the polyunsaturated fatty acids and can decreased the saturated fatty acids. Row fat content of milk was not decreasing in the course of examination neither of the cold extruded linseed nor the whole linseed supplement as opposed to observations experienced by other authors. In case of monounsaturated and polyunsaturated fatty acids when supplementing with cold extruded linseed the most significant change was observable in the concentration of the elaidic acid, oleic acid, linoleic acid, alfa-linolenic acid, conjugated linoleic acid. In case of saturated fatty acids the quantity of palmitic acid and myristic acid lowered considerably. When observating the feeding with whole linseed the concentration of many fatty acids from the milkfat of saturated fatty acids lowered (caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid). The quantity of some unsaturated fatty acids was showing a distinct rise after feeding with linseed, this way the oleic acid, alfa-linolenic acid, conjugated linoleic acid, eicosadienoic acid. The aim of the study was to produce food which meets the changed demands of customers as well. The producing of milk with favourable fatty acid content from human health point of view can give scope propagate the products of animal origin.  


2020 ◽  
Vol 147 ◽  
pp. 03009
Author(s):  
A Suhaeli Fahmi ◽  
Lukita Purnamayati

Abon ikan (fish floss/shredded fish) commonly processed by deep frying in cooking oil after fish meat were steamed and mixed with condiments. Deep frying technique used in abon ikan processing caused high rancidity risk of abon ikan during storage. In this research, deep frying and roasting method were compared. Fresh catfish (Clarias gariepinus) were used as raw material, after steamed and mixed with condiments, then mixed dough were processed with the treatments (roasted on pan or deep fried with frying oil). Cholesterol content was tested by Bohac test. Fatty acid composition was analyzed with Gas Chromatography. Roasted abon ikan contained moisture, fat and protein about 9.94%, 22.39% and 29.66% respectively while fried abon ikan contained about 4.98%, 23.19% and 27.50% respectively. Roasted abon ikan contained cholesterol about 0.28 mg/g and fried abon ikan contained about 0.74 mg/g. Fatty acid profile analysis show that in both samples unsaturated fatty acid were dominated by oleic acid and linoleic acid while saturated fatty acid were dominated by palmitic acid. Roasted abon ikan were lower in palmitic acid and oleic acid content but higher in palmitoleic acid and linoleic acid. Sensory analysis showed that roasted abon ikan gave better texture, flavor and odor while deep fried abon ikan was better in appearance.


1969 ◽  
Vol 23 (4) ◽  
pp. 869-878 ◽  
Author(s):  
J. H. Moore ◽  
R. C. Noble ◽  
W. Steele ◽  
J. W. Czerkawski

1. Sheep were given intraruminal infusions of maize oil or linoleic acid and samples of contents were taken from the rumen and abomasum at different times after the infusions. Hydrolysis of the maize oil occurred in the rumen with the production of mono- and di-glycerides as intermediates. Linoleic acid derived from the maize oil was hydrogenated to stearic acid. When linoleic acid was infused into the rumen, little or no stearic acid was produced and octadecenoic acid accumulated.2. When linoleic acid or maize oil was incubated with rumen contents in an artificial rumen and samples of the reaction mixtures were taken from the apparatus after various time intervals, the results were similar to those obtained in vivo, except that the hydrolysis of maize oil did not give rise to mono- and di-glycerides.3. These results are discussed in relation to previous findings on the effects of intraruminal infusions of maize oil or linoleic acid on the fatty acid composition of the blood triglycerides of sheep.


Sign in / Sign up

Export Citation Format

Share Document