scholarly journals Appraisal of Rainwater Harvesting in ASCOT Engineering Zabali Campus Baler Aurora

2021 ◽  
Vol 06 (06) ◽  
Author(s):  
Nelson L. Sibayan ◽  

One of the problems encountered by the engineering students and faculty and staff members of Aurora State College of Technology (ASCOT) is the water supply for toilet and urinal flushing. This problem is attributed to the location of the area which is 50m above sea level. The main water source of the campus is the water coming from water falls which requires pipelines that are vulnerable from heavy damage during natural disasters and illegal intrusion. To address the scarcity, rainwater harvesting is considered by the researchers and in this research, the researchers assessed the potential of rainwater harvesting using the roof of an existing building in the area. The result shows that harvesting water from rainfall can become a solution in the scarcity of water in the area. Based on 10-year rainfall data from PAGASA Baler Station Complex which is Located approximately 4.3 km from the location of the study that on average, during December, November and October the amount of rainfall can fulfill the demand of water for toilet and urinal flushing up to 102.54 %, 76.98% and 75.40% respectively. The total area of rainwater collector in this study is about 186.87 square meter. Data also shows that on average, the month of August has the minimum potential of fulfilling the demand water for the area but by increasing the area of collector by 68%, 100% of the demand for this specific purpose maybe met during the driest month of the year

2021 ◽  
Author(s):  
R.H. Bhuiyan ◽  
◽  
S. Shirin ◽  
K. Paul Shourov ◽  

Sundarbans as the primary coastal defense of Bangladesh against various natural disaster encounters recurrent homelessness due to these calamities, resulting in cutting down forests for housing materials from the only nearby resource. The traditional vernacular practice and socio-cultural studies show a symbiotic relationship between the forest and inhabitants, but the ecological imbalance created by climate change made life difficult for them, whose livelihood solely depends on the forest as well. The inability to reuse the building materials any disaster causes an ever-increasing cycle of carbon footprint. Regarding these, the non-experimental research aims to build such a homestead prototype that creates an adaptable solution. The existing building practices consist of non-reusable materials, poor structural integrity, and lack of sustainable approaches, thus unfit to withstand the increasing disasters and calamities. The approach discussed here utilizes plastic waste, drums, bamboo for disaster adaptability, structural flexibility, rainwater harvesting, solar, and biogas energy for a sustainable lifestyle. So, the goal is to provide a sustainable solution for the economically challenged population. This prototype creates an adaptive strategy for mitigating the disastrous events in Sundarbans to promote resilience and sustainability.


2021 ◽  
Vol 16 (1) ◽  
pp. 18-25
Author(s):  
Fauziah Ismahyanti ◽  
Rosmawita Saleh ◽  
Arris Maulana

This research is done to plan rainwater harvesting so that it can be used as an alternative water source on the campus B UNJ so it is expected to reduce groundwater use that can cause a puddle. The method used in the PAH development plan is a water balance method. This method compares the level of demand with water volume that can be accommodated or the availability of water (supply). Based on the results of the analysis, it was found that the potential for rainwater in the FIO office building A was 1773.95 m3 , FMIPA building B was 1904.62 m3 , the FIO lecture building C was 1613.21 m3 and the Ulul Albab mosque was 512.16 m3 . Potential rainwater obtained cistern PAH capacity of 200 m3 by saving water needs by 30% in building A FIO, building B FMIPA, and building C FIO. The capacity of the PAH cistern is 80 m3 by saving the water needs of the Ulul Albab mosque by 13.3%. Placement of the PAH cistern under the ground with a ground water system. Ecodrainage application by utilizing the PAH system can reduce drainage load by 0.158 m3 /second or 13.9% from rainwater runoff.


2018 ◽  
Vol 4 (2) ◽  
pp. 291-302 ◽  
Author(s):  
Brandon Reyneke ◽  
Thomas Eugene Cloete ◽  
Sehaam Khan ◽  
Wesaal Khan

Solar pasteurization systems are able to reduce microbial contamination in rainwater to within drinking water guidelines and thereby provide households in informal settlements and rural areas with an alternative water source.


2015 ◽  
Vol 15 (6) ◽  
pp. 1326-1333
Author(s):  
Liane Yuri Kondo Nakada ◽  
Rodrigo Braga Moruzzi

Rainwater harvesting can provide an alternative water source, which may demand little treatment, depending on the end use. Some starches have been used in water treatment as coagulant/flocculant/filtration aid, and might be applied as primary coagulant. Here, we show direct filtration with hydraulic rapid mixing, using 2–6 mg L−1 cationic corn starch as primary coagulant, considerably improves roof-harvested rainwater quality, achieving removal efficiencies of up to 71.7% of apparent colour, 78% of turbidity, 1.1 log-unit of total coliform, and 1.6 log-unit of Escherichia coli, meeting guidelines for turbidity, even for potable purposes. Cationic corn starch has proved to be a suitable primary coagulant when filtration is performed in a single-layer sand filter (coefficient of uniformity: 1.8, effective particle size: 0.52 mm), at hydraulic loading rate of 450 m day−1. However, a disinfection unit is required to meet an absence of faecal coliform.


2018 ◽  
Vol 18 (6) ◽  
pp. 1946-1955 ◽  
Author(s):  
Miguel Ángel López Zavala ◽  
Mónica José Cruz Prieto ◽  
Cristina Alejandra Rojas Rojas

Abstract In this study, the reliability of using rainwater harvesting to cover the water demand of a transportation logistics company located in Mexico City was assessed. Water consumption in facilities and buildings of the company was determined. Rainwater potentially harvestable from the roofs and maneuvering yard of the company was estimated based on a statistical analysis of the rainfall. Based on these data, potential water saving was determined. Characterization of rainwater was carried out to determine the treatment necessities for each water source. Additionally, the capacity of water storage tanks was estimated. For the selected treatment systems, an economic assessment was conducted to determine the viability of the alternative proposed. Results showed that current water demand of the company can be totally covered by using rainwater. The scenario where roof and maneuvering yard rainwater was collected and treated together resulted in being more economic than the scenarios where roof and maneuvering yard rainwater was collected and treated separately. Implementation of the rainwater harvesting system will generate important economic benefits for the company. The investment will be amortized in only 5 years and the NPV will be on the order of US$ 5,048.3, the IRR of 5.7%, and the B/I of 1.9.


2015 ◽  
Vol 10 (3) ◽  
pp. 424-431 ◽  
Author(s):  
T. Morales-Pinzón ◽  
M. I. García-Serna ◽  
M. T. Flórez-Calderón

An analysis of the utilisation and quality of rainwater in different collection systems located in the Pereira–Dosquebradas (Colombia) conurbation was conducted to evaluate the conditions in these systems and thus determine whether rainwater is safe water for domestic, commercial and industrial purposes. The quality of rainwater and its relation to selected variables (roofing material, material deposits, piping material and amount of precipitation) were evaluated. Six buildings with different types of roofing (zinc, polycarbonate or fibre cement) that have installed systems to capture rainwater were selected for the evaluation. According to the results, the sampled water is suitable for different uses. In cities, rainwater can be adapted and eventually used as an alternative water source, thereby reducing dependence on local and external sources.


Author(s):  
Prof. Akash N Ka Patel ◽  
Pavar P. Nandsingh ◽  
Pavar V. Satpalsingh ◽  
Purvesh Raval

As the world population increases, the demand increases for good quality of drinking water. Surface and groundwater resources are being consumed faster than they can be recharged. Rainwater harvesting is an old practice that is being adopted by many nations as a viable decentralized water source. This project is to prepare a model for rainwater harvesting from rooftops and we are designing Rainwater harvesting system in a residential building to use the rooftop rainwater and recharge ground water from excess water & concrete roads of residential houses then making demo model to show different collaborative techniques.


Sign in / Sign up

Export Citation Format

Share Document