scholarly journals Modification of the Exterior and Interior Solution of Einstein’s G22 Field Equation for a Homogeneous Spherical Massive Bodies whose Fields Differ in Radial Size, Polar Angle, and Time.

In general theory of relativity, Einstein’s field equations relate the geometry of space-time with the distribution of matter within it. These equations were first published by Einstein in the form of a tensor equation which related the local space-time curvature with the local energy and momentum within this space-time. In this article, Einstein’s geometrical field equations interior and exterior to astrophysically real or hypothetical distribution of mass within a spherical geometry were constructed and solved for field whose gravitational potential varies with time, radial distance and polar angle. The exterior solution was obtained using power series. The metric tensors and the solution of the Einstein’s exterior field equations used in this work has only one arbitrary function f(t,r,θ) , and thus put the Einstein’s geometrical theory of gravitation on the same bases with the Newton’s dynamical theory of gravitation. The gravitational scalar potential f(t,r,θ) obtained in this research work to the order of co, c-2 , contains Newton dynamical gravitational scalar potential and post Newtonian additional terms much importance as it can be applied to the study of rotating bodies such as stars. The interior solution was obtained using weak field and slow-motion approximation. The obtained result converges to Newton’s dynamical scalar potential with additional time factor not found in the well-known Newton’s dynamical theory of gravitation which is a profound discovery with the dependency on three arbitrary functions. Our result obeyed the equivalence principle of Physics.

2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Pérez Carlos ◽  
Augusto Espinoza ◽  
Andrew Chubykalo

Abstract The purpose of this paper is to get second-order gravitational equations, a correction made to Jefimenko’s linear gravitational equations. These linear equations were first proposed by Oliver Heaviside in [1], making an analogy between the laws of electromagnetism and gravitation. To achieve our goal, we will use perturbation methods on Einstein field equations. It should be emphasized that the resulting system of equations can also be derived from Logunov’s non-linear gravitational equations, but with different physical interpretation, for while in the former gravitation is considered as a deformation of space-time as we can see in [2–5], in the latter gravitation is considered as a physical tensor field in the Minkowski space-time (as in [6–8]). In Jefimenko’s theory of gravitation, exposed in [9, 10], there are two kinds of gravitational fields, the ordinary gravitational field, due to the presence of masses, at rest, or in motion and other field called Heaviside field due to and acts only on moving masses. The Heaviside field is known in general relativity as Lense-Thirring effect or gravitomagnetism (The Heaviside field is the gravitational analogous of the magnetic field in the electromagnetic theory, its existence was proved employing the Gravity Probe B launched by NASA (See, for example, [11, 12]). It is a type of gravitational induction), interpreted as a distortion of space-time due to the motion of mass distributions, (see, for example [13, 14]). Here, we will present our second-order Jefimenko equations for gravitation and its solutions.


2003 ◽  
Vol 14 (01) ◽  
pp. 41-48 ◽  
Author(s):  
G. ZET ◽  
V. MANTA ◽  
S. BABETI

A deSitter gauge theory of gravitation over a spherical symmetric Minkowski space–time is developed. The "passive" point of view is adapted, i.e., the space–time coordinates are not affected by group transformations; only the fields change under the action of the symmetry group. A particular ansatz for the gauge fields is chosen and the components of the strength tensor are computed. An analytical solution of Schwarzschild–deSitter type is obtained in the case of null torsion. It is concluded that the deSitter group can be considered as a "passive" gauge symmetry for gravitation. Because of their complexity, all the calculations, inclusive of the integration of the field equations, are performed using an analytical program conceived in GRTensorII for MapleV. The program allows one to compute (without using a metric) the strength tensor [Formula: see text], Riemann tensor [Formula: see text], Ricci tensor [Formula: see text], curvature scalar [Formula: see text], field equations, and the integration of these equations.


2021 ◽  
Vol 36 (02) ◽  
pp. 2150015
Author(s):  
Nayan Sarkar ◽  
Susmita Sarkar ◽  
Farook Rahaman ◽  
Safiqul Islam

The present work looks for new spherically symmetric wormhole solutions of the Einstein field equations based on the well-known embedding class 1, i.e. Karmarkar condition. The embedding theorems have an interesting property that connects an [Formula: see text]-dimensional space–time to the higher-dimensional Euclidean flat space–time. The Einstein field equations yield the wormhole solution by violating the null energy condition (NEC). Here, wormholes solutions are obtained corresponding to three different redshift functions: rational, logarithm, and inverse trigonometric functions, in embedding class 1 space–time. The obtained shape function in each case satisfies the flare-out condition after the throat radius, i.e. good enough to represents wormhole structure. In cases of WH1 and WH2, the solutions violate the NEC as well as strong energy condition (SEC), i.e. here the exotic matter content exists within the wormholes and strongly sustains wormhole structures. In the case of WH3, the solution violates NEC but satisfies SEC, so for violating the NEC wormhole preserve due to the presence of exotic matter. Moreover, WH1 and WH2 are asymptotically flat while WH3 is not asymptotically flat. So, indeed, WH3 cutoff after some radial distance [Formula: see text], the Schwarzschild radius, and match to the external vacuum solution.


Author(s):  
Maciej Gos

The general theory of relativity and field theory of matter generate an interesting ontology of space-time and, generally, of nature. It is a monistic, anti-atomistic and geometrized ontology — in which the substance is the metric field — to which all physical events are reducible. Such ontology refers to the Cartesian definition of corporeality and to Plato's ontology of nature presented in the Timaeus. This ontology provides a solution to the dispute between Clark and Leibniz on the issue of the ontological independence of space-time from distribution of events. However, mathematical models of space-time in physics do not solve the problem of the difference between time and space dimensions (invariance of equations with regard to the inversion of time arrow). Recent research on space-time singularities and asymmetrical in time quantum theory of gravitation will perhaps allow for the solution of this problem based on the structure of space-time and not merely on thermodynamics.


2004 ◽  
Vol 13 (06) ◽  
pp. 1073-1083
Author(s):  
ASIT BANERJEE ◽  
UJJAL DEBNATH ◽  
SUBENOY CHAKRABORTY

The generalized Szekeres family of solution for quasi-spherical space–time of higher dimensions are obtained in the scalar tensor theory of gravitation. Brans–Dicke field equations expressed in Dicke's revised units are exhaustively solved for all the subfamilies of the said family. A particular group of solutions may also be interpreted as due to the presence of the so-called C-field of Hoyle and Narlikar and for a chosen sign of the coupling parameter. The models show either expansion from a big bang type of singularity or a collapse with the turning point at a lower bound. There is one particular case which starts from the big bang, reaches a maximum and collapses with the in course of time to a crunch.


Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn

This section presents annotations of the manuscript of Albert Einstein's canonical 1916 paper on the general theory of relativity. It begins with a discussion of the foundation of the general theory of relativity, taking into account Einstein's fundamental considerations on the postulate of relativity, and more specifically why he went beyond the special theory of relativity. It then considers the spacetime continuum, explaining the role of coordinates in the new theory of gravitation. It also describes tensors of the second and higher ranks, multiplication of tensors, the equation of the geodetic line, the formation of tensors by differentiation, equations of motion of a material point in the gravitational field, the general form of the field equations of gravitation, and the laws of conservation in the general case. Finally, the behavior of rods and clocks in the static gravitational field is examined.


Einstein’s Generalised Theory of Relativity has accomplished notable results in the region of astronomical mechanics, but for the moment it seems difficult to go further in this direction until some further progress is made with the theory of the solution of the field equations. Practically all the consequences of the theory which have been established so far are obtained from the solution of the equations corresponding to a single isolated singularity. The exact solutions corresponding to two isolated singularities are urgently required for the further exploration of the theory. The approximate solutions which have been put forward by De Sitter, Dröste and Einstein, though valuable in default of exact solutions, are apt to be misleading and perhaps to exclude effects of far-reaching theoretical importance such as radiation. Meanwhile it is well to examine the consequences of the theory at the other extreme of the realm of physical science, in its relation to atomic phenomena. Here it seems no longer justifiable to consider gravitation and electricity separately. In these microscopic phenomena, where we are free from the effects of averaging, mass and charge seem to be inextricably connected. They exist in certain definite combinations, possibly in only two combinations as electrons and hydrogen nuclei. The gravitational field corresponding to such a charged particle has been investigated by Nordström by the application of the calculus of variations to the Hamiltonian function of the combined fields. Nordström’s work was not brought to our notice until after the present paper was written and we had obtained the same result by direct solution of the field equations. As the methods employed may perhaps be more familiar to English students of the subject it has been thought well to give a brief outline of this proof as an alternative to Nordström’s in the first section of this paper.


Author(s):  
David D. Nolte

The intrinsic curvature of a metric space is captured by the Riemann curvature tensor, which can be contracted to the Ricci tensor and the Ricci scalar. Einstein took these curvature quantities and constructed the Einstein field equations that relate the curvature of space-time to energy and mass density. For an isotropic density, a solution to the field equations is the Schwarzschild metric, which contains mass terms that modify both the temporal and the spatial components of the invariant element. Consequences of the Schwarzschild metric include gravitational time dilation, length contraction, and redshifts. Trajectories in curved space-time are expressed as geodesics through the Schwarzschild metric space. Solutions to the geodesic equation lead to the precession of the perihelion of Mercury and to the deflection of light by the Sun.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
V. U. M. Rao ◽  
D. Neelima

Axially symmetric string cosmological models with bulk viscosity in Brans-Dicke (1961) and general relativity (GR) have been studied. The field equations have been solved by using the anisotropy feature of the universe in the axially symmetric space-time. Some important features of the models, thus obtained, have been discussed. We noticed that the presence of scalar field does not affect the geometry of the space-time but changes the matter distribution, and as a special case, it is always possible to obtain axially symmetric string cosmological model with bulk viscosity in general relativity.


2021 ◽  
Author(s):  
Sangwha Yi

In this paper, we derived electromagnetic field transformations and electromagnetic field equations of Maxwell in Rindler space-time in the context of general theory of relativity. We then treat the Lorentz gauge transformation and the Lorentz gauge fixing condition in Rindler space-time and obtained the transformation of differential operation, the electromagnetic 4-vector potential and the field. In addition, charge density and the electric current density in Rindler spacetimeare derived. To view the invariance of the gauge transformation, gauge theory is applied to Maxwell equations in Rindler space-time. In Appendix A, we show that the electromagnetic wave function cannot exist in Rindler space-time. An important point we assert in this article is the uniqueness of the accelerated frame. It is because, in the accelerated frame, one can treat electromagnetic field equations.


Sign in / Sign up

Export Citation Format

Share Document