scholarly journals Biomass and Carbon Stock in the Sal (Shorea robusta) Forest of Dang District Nepal

2021 ◽  
Vol 2 (3) ◽  
pp. 204-212
Author(s):  
Supuspa Regmi ◽  
Krishna Prasad Dahal ◽  
Garima Sharma ◽  
Siddhartha Regmi ◽  
Mahamad Sayab Miya

The study was conducted to find the net carbon stock in the Sal (Shorea robusta) forest in Bagdaila Chisapani community forest of Dang district, Nepal. The inventory was done by a stratified sampling technique with 0.5% sampling intensity taking into account the woody plants with ≥ 5cm DBH. A total of 49 sample plots of radius 8.94m and 5.64 were established to measure tree biomass and sapling biomass respectively in the forest. The mean above-ground carbon (AGC) was 160.4 t ha-1 and the mean below-ground carbon (BGC) was 24.1t ha-1. The mean total carbon stock in the study area was estimated to be 99.02 t ha-1; of which maximum carbon stock of 143.51 t ha-1 was found in block number 5. Sal was the major tree species in the CF. The biomass and carbon content in this forest is found quite low as compared to other studies in the Sal forest and other tropical forests which were due to the presence of tree stands of less diameter and height. This study would be helpful in the long-term management of forests, planning, and research purposes. The data from this study could also be taken as a reference document for the participation of community forests in carbon accounting under the REDD+ scheme in Nepal.

2015 ◽  
Vol 21 (4) ◽  
pp. 307
Author(s):  
Arison Arihafa ◽  
Sebastian Dalgarno ◽  
Ezra Neale

Forest carbon emission mitigation schemes seek to protect tropical forest, combat effects of climate change, and offer potential cash and development opportunities. Reducing emissions from deforestation and degradation (REDD+) projects based on a foundation of accurate carbon stock assessment provide such an opportunity for Papua New Guinea. The objective of this study was to quantify the carbon stock of the central forests of Manus Island, Papua New Guinea, and identify factors that underpin any observed variation within it. We employed the Winrock Standard Operating Procedures for Terrestrial Carbon Measurement for plots and associated measurements. In 75 variable-radius nested plots (total area = 14.4 ha), we assessed above-ground and total carbon stock of stems ≥5 cm diameter at breast height via general linear models in a model-selection framework. The top models described variation in average carbon stock at 95% lower and upper confidence interval in above-ground biomass solely in terms of forest type: primary hill forest 165.0 Mg C ha–1 (148.3–183.7, n = 48), primary plain forest 100.9 Mg C ha–1 (78.0–130.6, n = 10) and secondary hill forests 99.7 Mg C ha–1 (80.9–122.9, n = 17). To a lesser extent, above-ground carbon stock increased with slope and varied idiosyncratically by the nearest village. Our estimates are comparable with published studies for Papua New Guinea and the wider tropical region. These data should strengthen pre-existing knowledge and inform policies on carbon accounting for REDD+ projects in the region.


2012 ◽  
Vol 58 (No. 8) ◽  
pp. 372-379 ◽  
Author(s):  
M.R. Ullah ◽  
M. Al-Amin

The research was aimed to estimate above- and below-ground carbon stock in Tankawati natural hill forest of Bangladesh. A systematic sampling method was used to identify each sampling point through Global Positioning System (GPS). Loss on ignition and wet oxidation method were used to estimate biomass and soil carbon stock, respectively. Results revealed that the total carbon stock of the forest was 283.80 t&middot;ha<sup>&minus;1 </sup>whereas trees produce 110.94&nbsp;t&middot;ha<sup>&minus;1</sup>, undergrowth (shrubs, herbs and grass) 0.50 t&middot;ha<sup>&minus;1</sup>, litter fall 4.21 t&middot;ha<sup>&minus;1 </sup>and soil 168.15 t&middot;ha<sup>&minus;1 </sup>(up to 1m depth). The forest in the study area is a reservoir of carbon, as it has a good capacity to stock carbon from the atmosphere. To realize the forest sector potentiality inBangladesh, the carbon sequestration should be integrated with the Clean Development Mechanism (CDM) carbon trading system of the Kyoto Protocol. &nbsp; &nbsp;


2016 ◽  
Vol 26 (1) ◽  
pp. 24-31 ◽  
Author(s):  
H. P. Pandey ◽  
M. Bhusal

Estimation of total biomass and carbon sequestration in any forest is crucial as it gives ecological and economic benefits through various environmental services. With an aim to quantify the carbon stock densities in the two different ecological regions–the Hills and the Terai, two Community Forests (CFs) having the dominance of Shorea robusta were selected from Gorkha (in the Hills) and Chitwan (in the Terai) districts for the purpose of the study. Systematic random sampling with 1% sampling intensity was used to collect necessary data. The total carbon stock in the CFs of the Hills and the Terai were found to be 234.54 t ha-1 and 479.29 t ha-1, respectively. The biomass carbon stock density in the CF of the Terai was found to be higher (384.20 t ha-1) than the one in the Hills (123.15 t ha-1). Carbon densities of different carbon pools such as tree; sapling; leaf litter, grass and herbs were significantly higher (P<0.05) in the Terai than in the Hill forest whereas dead wood and stumps and the soil organic carbon density were found to be not significantly different in these regions. Similarly, the highest amount of soil organic carbon (SOC) was found in the uppermost soil horizon in the forests of both the regions. These results revealed that the biomass carbon stock density was higher in the Terai S. robusta forest than in the Hill S. robusta forest. However, the SOC obtained was in inverse relation to that of the biomass carbon stock in both the ecological regions. It would not be biased if different ecological regions with similar forest types are intervened with different management strategies for having more carbon stocks and for the conservation of biodiversity in the days to come.Banko JanakariA Journal of Forestry Information for NepalVol. 26, No. 1, Page: 24-31, 2016


2018 ◽  
Vol 6 (4) ◽  
pp. 72-83
Author(s):  
Sushma Tripathi ◽  
Chandra Bahadur Thapa ◽  
Amrit Sharma ◽  
Ganesh Paudel

Community forests of Nepal’s midhills have high potentiality to sequester carbon. This paper tries to analyze the biomass carbon stock in Schima-Castanopsis forest of Jaisikuna community forests of Kaski district, Nepal. Forest area was divided into two blocks and 18 sample plots (9 in each block) which were laid randomly. Diameter at Breast Height (DBH) and height of trees (DBH≥5cm) were measured using the DBH tape and clinometer. Leaf litter, herbs, grasses and seedlings were collected from 1*1m2 plot and fresh weight was taken. For calculating carbon biomass is multiplied by default value 0.47. The AGTB carbon content of Chilaune, Katus and other species were found 19.56 t/ha, 18.66 t/ha and 3.59 t/ha respectively. The AGTB of Chilaune dominated, Katus dominated and whole forest was found 43.78 t/ha, 39.83 t/ha and 41.81 t/ha respectively. Carbon content at leaf litter, herbs, grasses and seedlings was found 2.73 t/ha. Below ground biomass carbon at whole forest was found 6.27 t/ha. Total biomass and carbon of the forest was found 108.09 t/ha and 50.80 t/ha respectively. Difference in biomass and carbon content at Chilaune dominated block and Katus dominated block was found insignificant. This study record very low biomass carbon content than average of Nepal's forest but this variation in carbon stock is not necessarily due to dominant species present in the forest. Carbon estimation at forest of different elevation, aspect and location are recommended for further research. International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 72-84


1970 ◽  
Vol 3 (5) ◽  
pp. 75-80 ◽  
Author(s):  
Bharat Babu Shrestha

From July to December 2003 we studied the impact of forest resource use and management practices on community structure and regeneration of locally managed Shorea robusta (sal) forest in the mid-hills of central Nepal. We carried out a household survey in two villages (Namjung village of Gorkha and Khari village of Dhading district), and studied the community structure and regeneration of important multipurpose tree species (Shorea robusta Gaertn. and Schima wallichii (DC.) Korth.) in community forests. Dependency on forests has been decreasing due to limited access to resources, decrease in cattle number and the cultivation of more fuelwood and fodder trees in non-forested land. Nonetheless, forests remain the major source of fuelwood, supplying 63% of the total. Alternative energy sources (biogas and solar cell) were not significant at the time of our study. S. robusta was the dominant tree in both forests, with high relative density (74%) in Namjung forest (NF) and 50% in Khari forest (KF); its importance value index (IVI) was 171 in NF and 152 in KF. Tree density of sal in NF was the highest (909 tree ha–1) among the reported values in references for the same species. Both forests had comparatively low species diversity (1.09 in NF and 1.30 in KF); local management appears to contribute to reduced diversity. Regeneration of sal was sustainable and fairly high, with a typical reverse-J-shaped size class diagram (in NF), a good predictor of mono-dominant sal forest. Regeneration of S. wallichii was unsustainable in both forests. Key words: Schima wallichii, Shorea robusta, size class diagram, species diversity Himalayan Journal of Sciences 3(5) 2005 p. 75-80


2014 ◽  
Vol 11 (7) ◽  
pp. 10703-10735 ◽  
Author(s):  
X. Liu ◽  
R. Ekoungoulou ◽  
J. J. Loumeto ◽  
S. A. Ifo ◽  
Y. E. Bocko ◽  
...  

Abstract. The study was aimed to estimate the carbon stocks of above- and below-ground biomass in Lesio-louna forest of Congo. The methodology of allometric equations was used to measure the carbon stocks of Lesio-louna natural forest. We are based precisely on the model II which is also called non-destructive method or indirect method of measuring carbon stocks. While there has been use of parameters such as the DBH and wood density. The research was done with 22 circular plots each 1256 m2. In the 22 plots studied, 19 plots are in the gallery forest and three plots in the secondary forest. Also, 22 circular plots were distributed in 5 sites studies of Lesio-louna forest, including: Inkou forest island, Iboubikro, Ngoyili, Blue lake and Ngambali. So, there are two forest types (secondary forest and gallery forest) in this forest ecosystem. In the 5 sites studied, we made measurements on a total of 347 trees with 197 trees for the class of 10–30 cm diameter, 131 trees for the class of 30–60 cm diameter and 19 trees in the diameter class > 60 cm. The results show that in the whole forest, average carbon stock for the 22 plots of the study was 168.601 t C ha−1 for AGB, or 81% and 39.551 t C ha−1 for BGB, or 19%. The total carbon stocks in all the biomass was 3395.365 t C for AGB, which is 3.395365 × 10–6 Gt C and 909.689934 t C for BGB, which was 9.09689934 × 10–7 Gt C. In this forest, the carbon stock was more important in AGB compared to BGB with respectively 3395.365 t C against 909.689934 t C. Plot10 (AGB = 363.899 t C ha−1 and BGB = 85.516 t C ha−1) was the most dominant in terms of carbon quantification in Lesio-louna.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mebrahtu Haile ◽  
Emiru Birhane ◽  
Meley Mekonen Rannestad ◽  
Muyiwa S. Adaramola

Increased presence of expansive plant species could bring about various ecological influences on biomass carbon, soil organic carbon, and the physical and chemical properties of the soils. However, their impacts on these ecological parameters could differ due to a wide range of life forms, plant communities of the invaded ecosystems, and abiotic conditions. This work was conducted to examine the impacts of Cadia purpurea and Tarchonanthus camphoratus cover on carbon stock in vegetation and soil and soil physicochemical properties in Desa’a forest, northern Ethiopia. Vegetation and soil data were collected from a total of 150 sampling plots (size 20 m × 20 m) from uninvaded and invaded vegetation conditions. The soil samples were collected from topsoil (0–15 and 15–30 cm) of the uninvaded and invaded vegetation conditions. The statistical difference in carbon stock and soil characteristics P < 0.05 of both invaded and uninvaded vegetation conditions were tested using an independent t-test using an R-software. The mean above- and below-ground biomass carbon stocks of the uninvaded vegetation condition (17.62 Mg·C/ha and 4.14 Mg·C/ha, respectively) were found to be significantly higher than those of the invaded vegetation condition (4.73 Mg·C/ha and 1.11 Mg·C/ha, respectively). The mean soil organic carbons (SOC) were significantly higher P < 0.01 in the uninvaded (122.83 Mg·C/ha) than in the invaded (90.13 Mg·C/ha) vegetation condition. The total carbon stock estimates were significantly higher P < 0.01 in the uninvaded vegetation condition (144.59 Mg·C/ha) than in the invaded vegetation condition (95.97 Mg·C/ha). Furthermore, the result revealed that most of the soil characteristics were significantly lower P < 0.05 under the expansive shrubs invaded vegetation conditions except for significantly high sand content P < 0.05 . Silt, nitrogen, phosphorus, calcium, copper, and zinc did not significantly change with the cover of the expansive shrubs. Our results suggest that increased presence of the expansive species decreased carbon trapping and affected most of the soil nutrients within the forest. Hence, to enhance the carbon storage potential and to maintain the soil nutrient status of the forest, proper conservation, monitoring, and management of the existing PNV and controlling a further expansion of the expansive shrubs are required. Further studies will be required on the factors responsible for the difference in carbon stocks and soil nutrients in each vegetation condition in addition to the impacts of the expansive shrubs expansion.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rajeev Joshi

Regeneration patterns of species population can address climate change by adaptive evolution or by migrating association to survival in their favorable climate and finally decide the particular forest future. This research examined the status of regeneration and carbon sequestration potential in tropical Sal (Shorea robusta) forest of Kanchanpur district, Nepal. For the study, a total of 63 concentric sample plots were investigated by using systematic sampling with 0.5% sampling intensity. Regeneration status of forest was estimated by calculating the density of each species in each developmental phase. The above-ground carbon stock of trees species were estimated using allometric equations. The studied forests had good regeneration status and Shorea robusta was the dominant species in terms of regeneration and carbon stock. Ramnagar community forest had greater number of seedling, sapling and tree than that of the Ganesh community forest. Reverse J-shaped population curves were recorded at both the study sites. This study provided information about the regeneration status, structure, composition and carbon sequestration potential of tree species which is very necessary for conservation and sustainable management of community forests. Studies indicate that community management has increased the carbon stock of forests and also has promoted the productivity of forests by altering the structure and composition of the community forests.


2020 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Budiadi Budiadi

Konservasi karbon merupakan salah satu tindakan penting dalam rehabilitasi pesisir, khususnya pesisir selatan Pulau Jawa dengan keunikan ombak yang besar, salinitas tinggi dan sedimen beragam. Penelitian dilaksanakan untuk menduga simpanan karbon dalam berbagai bagian pada areal pesisir tersebut, yang terdiri dari tapak tergenang (tegakan mangrove 14 tahun jenis Avicennia/AV, Rhizophora/RH dan campuran/MX, lahan sedimen/SD, rumput/GR) dan tapak kering berpasir tegakan Casuarina equisetifolia/CS umur 18 tahun. Tiga sampai sembilan petak ukur dibuat untuk pengamatan dan pengukuran vegetasi, serta pengambilan sampel tanah (kedalaman 0-20, 20-40 dan 40-60 cm), dan pengukuran tegakan. Biomasa pohon diestimasi dengan mengkonvesri diameter batang (DBH) menggunakan persamaan alometrik. Biomasa pohon dirubah menjadi karbon tersimpan menggunakan berat jenis kayu yaitu 0,464 untuk above-ground (AGC), dan 0,39 untuk below-ground (BGC), serta untuk menduga biomasa karbon total (TBC). Karbon organik tanah (COT) dianalisis secara terpisah, dan digabungkan dengan karbon biomasa untuk memperkirakan simpanan karbon dalam ekosistem. Hasil penelitian menunjukkan variasi yang tinggi dari pertumbuhan dan kerapatan pohon, khususnya pada tegakan mangrove, dengan kemampuan regenerasi yang rendah. Tidak ditemukan perbedaan yang nyata dari simpanan karbon pada biomasa antara tegakan mangrove dengan Casuarina. Rerata TBC pada mangrove adalah 46,08 Mg C/ha, sedikit lebih rendah daripada CS (51,50 Mg C/ha). Di bawah tanah (hingga kedalaman 60 cm), tapak tergenang (AV, RH, MX, SD dan GR) secara nyata menyimpan COT lebih besar daripada tapak kering (CS). Kedalaman tanah secara nyata mempengaruhi COT, namun pada tapak tergenang semakin dalam tanah maka COT semakin besar, sedangkan tren sebaliknya pada tapak kering. Perkiraan total karbon tersimpan adalah 248.52 (±87.21) Mg C/ha, dengan terendah pada CS (94.46 Mg C/ha) dan tertinggi pada MX (324.77 Mg C/ha). Rehabilitasi pesisir berpeluang meningkatkan simpanan karbon ekosistem karena adanya adanya biomasa pohon, dibandingkan tapak terbuka yakni SD dan GR. Pada tapak tergenang/tegakan mangrove sebagian besar simpanan karbon berupa COT, dan lebih sedikit ditemukan pada CS. Perbedaan karakteristik simpanan karbon ini memerlukan penanganan atau konservasi yang berbeda, tetapi sama-sama membutuhkan rehabilitasi dan regenerasi buatan yang intensif. Carbon Stock Estimation in the South Coastal Rehabilitation Area of Java IslandAbstractCarbon conservation is one of important actions for coastal rehabilitation, in particular in the south coast of Java Island with its unique characteristics of strong tide, high salinity and diverse substrates. The research aimed to estimate carbon stocks from various carbon pools in the coast rehabilitation area, including wetland sites (14-year-old mangroves of Avicennia/AV, Rhizophora/RH and mix mangrove/MX, mudflat-sediment/SD, grassland/GR) and dry-sandy site of 18-year-old Casuarina equisetifolia/CS. Three to nine plots were established for observing and measuring vegetation, as well as taking soil sample at 0-20 cm, 20-40 cm, 40-60 cm depths. Tree biomass were estimated by converting treestem diameter using allometric equation. The tree biomass were converted into tree carbon using carbon density of 0.464 for aboveground (AGC), and 0.39 for below-ground (BGC), and to estimate total biomass carbon (TBC). Soil organic carbon (SOC) was analyzed separately, and combined with biomass carbon to estimate total carbon stock in the ecosystems. High variation of tree growth and density were found, especially in mangrove stands, with a low level of natural regeneration. No significant difference of carbon stock in biomass between mangroves and Casuarina was observed. Average TBC in mangroves (46.08 Mg C/ha) was slightly lower than in CS (51.50 Mg C/ha). In below ground (up to 60 cm depth), wetland sites (AV, RH, MX, SD and GR) significantly stored more SOC than dry land (CS). Soil depth significantly affected SOC, but in wetland sites deeper soil contained more carbon than upper, while an opposite trend was observed in CS. Estimated total carbon stock in the coast was 248.52 (±87.21) Mg C/ha, with the lowest in CS (94.46 Mg C/ha) and highest in MX (324.77 Mg C/ha). Rehabilitation activities in the coast possibly improve carbon stock in the ecosystems due to tree biomass, compared to open sites of SD and GR. In the wetland or mangroves, most of carbon was observed as SOC, and less in the dry-land site. The different characteristics of carbon storage in the south coast need different conservation techniques, but both sites need intensive rehabilitation work and artificial regeneration.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuchen Meng ◽  
Jiankun Bai ◽  
Ruikun Gou ◽  
Xiaowei Cui ◽  
Jianxiang Feng ◽  
...  

Abstract Background Although great efforts have been made to quantify mangrove carbon stocks, accurate estimations of below-ground carbon stocks remain unreliable. In this study, we examined the distribution patterns of mangrove carbon stocks in China and other countries using our own field survey data and datasets from published literature. Based on these data, we investigated the possible relationships between above-ground carbon stock (AGC) and below-ground carbon stock (BGC) for mangrove forests, aiming to provide a scientific basis for estimation of total mangrove carbon stocks. Results The average above-ground carbon stock in each region was sizeable (ranging from 12.0 to 150.2 Mg/ha), but average below-ground carbon stock was dominant (ranging from 46.6 to 388.6 Mg/ha), accounting for 69–91% of total carbon stock at the sites studied in China. Significant positive relationships were found between above-ground and below-ground mangrove carbon stocks, with the best fitting equation as BGC = 1.58 * AGC + 81.06 (Mg/ha, R2 = 0.62, p < 0.01, n = 122) for China. Such linear relationships vary for mangrove forests of different types and locations, from different geographical regions in China to other countries worldwide. Conclusion The positive relationship we found between above- and below-ground carbon stocks of mangrove forests in China and worldwide can facilitate more accurate assessments of mangrove blue carbon stocks at regional or global scales using modern techniques including remote sensing.


Sign in / Sign up

Export Citation Format

Share Document