scholarly journals Government control in increasing vehicles taxpayer compliance

2021 ◽  
Vol 26 ◽  
pp. 502-513
Author(s):  
Diah Anggeraini Hasri ◽  
Zulkieflimansyah Zulkieflimansyah ◽  
Muhammad Nurjihadi ◽  
Nova Adhitya Ananda ◽  
Lukmanul Hakim

This study aims to determine the dynamics of taxpayer compliance from time to time by using a mathematical model. This study uses two analysis tools, namely differential equations, to create a model of taxpayer compliance and Moderated Regression Analysis to determine the effect of moderating government control on increasing taxpayer compliance. This study indicates that government control can reduce the number of non-compliant taxpayers by looking at the sensitivity index. The results of the sensitivity index of government control parameters can reduce the basic reproduction number. Statistically, it is also proven that the moderation of government control can strengthen the effect of awareness on taxpayer compliance by 82.5%.

Author(s):  
Sk. Abdus Samad ◽  
Md. Tusberul Islam ◽  
Sayed Toufiq Hossain Tomal ◽  
MHA Biswas

Bangladesh is one of the largest tobacco users in the world being troubled by smoking related issues. In this paper we consider a compartmental mathematical model of smoking in which the population is divided into five compartments: susceptible, expose, smokers, temporary quitters and permanent quitters described by ordinary differential equations. We study by including the conversion rate from light smoker to permanent quit smokers. The basic reproduction number R0 has been derived and then we found two euilibria of the model one of them is smoking-free and other of them is smoking-present. We establish the positivity, boundedness of the solutions and perform stability analysis of the model. To decrease the smoking propensity in Bangladesh we perform numerical simulation for various estimations of parameters which offer understanding to give up smoking and how they influence the smoker and exposed class. This model gives us legitimate thought regarding the explanations for the spread of smoking in Bangladesh.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


2019 ◽  
Vol 27 (04) ◽  
pp. 503-530
Author(s):  
RUI XU ◽  
NING BAI ◽  
XIAOHONG TIAN

In this paper, mathematical analysis is carried out for a mathematical model of Tuberculosis (TB) with age-dependent latency and active infection. The model divides latent TB infection into two stages: an early stage of high risk of developing active TB and a late stage of lower risk for developing active TB. Infected persons initially progress through the early latent TB stage and then can either progress to active TB infection or progress to late latent TB infection. The model is formulated by incorporating the duration that an individual has spent in the stages of the early latent TB, the late latent TB and the active TB infection as variables. By constructing suitable Lyapunov functionals and using LaSalle’s invariance principle, it is shown that the global dynamics of the disease is completely determined by the basic reproduction number: if the basic reproduction number is less than unity, the TB always dies out; if the basic reproduction number is greater than unity, a unique endemic steady state exists and is globally asymptotically stable in the interior of the feasible region and therefore the TB becomes endemic. Numerical simulations are carried out to illustrate the theoretical results.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2 epidemic.


2020 ◽  
Vol 202 ◽  
pp. 12008
Author(s):  
Dipo Aldila

A mathematical model for understanding the COVID-19 transmission mechanism proposed in this article considering two important factors: the path of transmission (direct-indirect) and human awareness. Mathematical model constructed using a four-dimensional ordinary differential equation. We find that the Covid-19 free state is locally asymptotically stable if the basic reproduction number is less than one, and unstable otherwise. Unique endemic states occur when the basic reproduction number is larger than one. From sensitivity analysis on the basic reproduction number, we find that the media campaign succeeds in suppressing the endemicity of COVID-19. Some numerical experiments conducted to show the dynamic of our model respect to the variation of parameters value.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2epidemic.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-Feng Huo ◽  
Guang-Ming Qiu

A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction numberR0is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable ifR0≤1, and the system is uniformly persistence ifR0>1. Some numerical simulations are also given to explain our analytical results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse rate and increase the recovery rate.


2020 ◽  
Vol 15 ◽  
pp. 34 ◽  
Author(s):  
Jayrold P. Arcede ◽  
Randy L. Caga-anan ◽  
Cheryl Q. Mentuda ◽  
Youcef Mammeri

A mathematical model was developed describing the dynamic of the COVID-19 virus over a population considering that the infected can either be symptomatic or not. The model was calibrated using data on the confirmed cases and death from several countries like France, Philippines, Italy, Spain, United Kingdom, China, and the USA. First, we derived the basic reproduction number, R0, and estimated the effective reproduction Reff for each country. Second, we were interested in the merits of interventions, either by distancing or by treatment. Results revealed that total and partial containment is effective in reducing the transmission. However, its duration may be long to eradicate the disease (104 days for France). By setting the end of containment as the day when hospital capacity is reached, numerical simulations showed that the duration can be reduced (up to only 39 days for France if the capacity is 1000 patients). Further, results pointed out that the effective reproduction number remains large after containment. Therefore, testing and isolation are necessary to stop the disease.


2016 ◽  
Vol 14 (1) ◽  
pp. 567-585 ◽  
Author(s):  
Kazeem Oare Okosun ◽  
M. Mukamuri ◽  
Daniel Oluwole Makinde

AbstractThe aim of this paper is to investigate the effectiveness and cost-effectiveness of leptospirosis control measures, preventive vaccination and treatment of infective humans that may curtail the disease transmission. For this, a mathematical model for the transmission dynamics of the disease that includes preventive, vaccination, treatment of infective vectors and humans control measures are considered. Firstly, the constant control parameters’ case is analyzed, also calculate the basic reproduction number and investigate the existence and stability of equilibria. The threshold condition for disease-free equilibrium is found to be locally asymptotically stable and can only be achieved when the basic reproduction number is less than unity. The model is found to exhibit the existence of multiple endemic equilibria. Furthermore, to assess the relative impact of each of the constant control parameters measures the sensitivity index of the basic reproductive number to the model’s parameters are calculated. In the time-dependent constant control case, Pontryagin’s Maximum Principle is used to derive necessary conditions for the optimal control of the disease. The cost-effectiveness analysis is carried out by first of all using ANOVA to check on the mean costs. Then followed by Incremental Cost-Effectiveness Ratio (ICER) for all the possible combinations of the disease control measures. Our results revealed that the most cost-effective strategy for the control of leptospirosis is the combination of the vaccination and treatment of infective livestocks. Though the combinations of all control measures is also effective, however, this strategy is not cost-effective and so too costly. Therefore, more efforts from policy makers on vaccination and treatment of infectives livestocks regime would go a long way to combat the disease epidemic.


Sign in / Sign up

Export Citation Format

Share Document