In Vitro Synergism of Sulbactam- Cefoperazone and Fosfomycin Against Escherichia Coli and Klebsiella Aeromobilis from Indonesia

2021 ◽  
Vol 71 (5) ◽  
pp. 209-214
Author(s):  
Agus Syahrurachman ◽  
Atna Permana

Introduction: There is no susceptibility data of E. coli and K. aeromobilis in Indonesia, even data regarding minimal inhibitory concentration (MIC)-based susceptibility of E. coli and K. aeromobilis towards single antibiotic or combination of fosfomycin (FOS) and sulbactam-cepoferazone (SUL-CPZ) is very scarce, even though the data is required by clinicians. Methods: A descriptive observational study was carried out at the Microbiology Clinical Laboratory of the Faculty of Medicine, Universitas Indonesia. Thirty strains each of clinical isolates of E. coli and K. aeromobilis were subjected to MIC determination against FOS and SUL-CPZ. For susceptibility criteria, we adopted the Eucast guideline. The synergism of the combined antibiotics was determined by checkerboard titration. One strain of E. coli and K. aeromobilis showing a synergistic and independent effect against the combined antibiotics was subjected to a time-kill assay. The post-antibiotic effect (PAE) was determined on a strain of E. coli showing synergism against the combined antibiotics. Results: The MIC level of all strains decreased when the bacteria were exposed to the combined antibiotics. Synergism was observed in 53.3% of E. coli and 56.8% of K. aeromobilis. No antagonism was observed. Higher bacterial death during the first four hours occurred with the isolate, showing synergism compared to the isolate showing an independent effect. The PAE of E. coli was longer when exposed to combined antibiotics. Conclusion: In vitro synergism of FOS and SUL-CPZ was observed in the majority of isolates and could be used as the basis for further research on empirical treatment

2021 ◽  
Vol 8 (1) ◽  
pp. 160-165
Author(s):  
Masaaki Minami ◽  
Takafumi Ando ◽  
Hidemi Goto ◽  
Michio Ohta

Mupirocin (MUP) is an effective antibiotic against MRSA. Its bactericidal effect is stable under acid condition. By validating its antibacterial effect of Helicobacter pylori, we try to clarify MUP effect on H. pylori. The present study was conducted to investigate the effect of MUP on clarithromycin (CLR) / metronidazole (MNZ) -resistant and -susceptible strains of H. pylori, the time-kill effect of MUP, and the post antibiotic effect (PAE). We investigated the minimal inhibitory concentration (MIC) and the minimal bactericidal effect (MBC) of MUP against 140 H. pylori, which include clinical strains, ATCC43504, 26695 and J99. Ten of them were CLR -resistant strains and 3 were MNZ-resistant strains. The MIC90 and MBC of MUP on all 140 strains is 0.064 μg / ml, and 0.1 μg / ml, respectively. There were no differences of MUP effect between susceptible and resistant strains either for CLR or MNZ. Time-kill curve test and PAE test of MUP on ATCC43504 were performed. By adding MUP, time-kill curve showed that bacterial quantities decreased in dose and time-dependent manner. No viable colony was found after 12-hour culture with 0.1 μg / ml MUP. The value of PAE is 12. MUP is a potential effective antibiotic for H. pylori even those for CLR / MNZ -resistant strains.


2021 ◽  
Author(s):  
Gianluca Morroni ◽  
Laura Di Sante ◽  
Oriana Simonetti ◽  
Lucia Brescini ◽  
Wojciech Kamysz ◽  
...  

Overview: The global spread of antibiotic resistance represents a serious threat for public health. Aim: We evaluated the efficacy of the antimicrobial peptide LL-37 as antimicrobial agent against multidrug-resistant Escherichia coli. Results: LL-37 showed good activity against mcr-1 carrying, extended spectrum β-lactamase- and carbapenemase-producing E. coli (minimum inhibitory concentration, MIC, from 16 to 64 mg/l). Checkerboard assays demonstrated synergistic effect of LL-37/colistin combination against all tested strains, further confirmed by time–kill and post antibiotic effect assays. MIC and sub-MIC concentrations of LL-37 were able to reduce biofilm formation. Conclusion: Our preliminary data indicated that LL-37/colistin combination was effective against multidrug resistant E. coli strains and suggested a new possible clinical application.


2005 ◽  
Vol 51 (7) ◽  
pp. 541-547 ◽  
Author(s):  
L C Braga ◽  
A A.M Leite ◽  
K G.S Xavier ◽  
J A Takahashi ◽  
M P Bemquerer ◽  
...  

We evaluated the interaction between Punica granatum (pomegranate) methanolic extract (PGME) and antibiotics against 30 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). Susceptibility testing of the isolates to PGME and antibiotics was performed by the broth dilution method. Synergic activity was detected between PGME and the 5 antibiotics tested, chloramphenicol, gentamicin, ampicillin, tetracycline, and oxacillin, ranging from 38% to 73%. For some isolates, PGME did not interfere with the action of any of the antibiotics tested. The bactericidal activity of PGME (0.1 × MIC) in combination with ampicillin (0.5 × MIC) was assessed using chosen isolates by time-kill assays, and they confirmed the synergic activity. Using this combination, cell viability was reduced by 99.9% and 72.5% in MSSA and MRSA populations, respectively. PGME increased the post-antibiotic effect (PAE) of ampicillin from 3 to 7 h. In addition, PGME demonstrated the potential to either inhibit the efflux pump NorA or to enhance the influx of the drug. The detection of in vitro variant colonies of S. aureus resistant to PGME was low and they did not survive. In conclusion, PGME dramatically enhanced the activity of all antibiotics tested, and thus, offers an alternative for the extension of the useful lifetime of these antibiotics.Key words: Staphylococcus aureus, antibiotic-resistance, synergy, NorA, Punica granatum.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


1970 ◽  
Vol 6 (1) ◽  
pp. 13-18 ◽  
Author(s):  
MA Zinnah ◽  
MH Haque ◽  
MT Islam ◽  
MT Hossain ◽  
MR Bari ◽  
...  

A total of 100 different E. coli isolates collected from 10 different biological and environmental sources (10 isolates from each source) such as human faces, human urine, cattle, sheep, goat, chicken, duck, pigeon, drain sewage and soil were used for in-vitro drug sensitivity test in the Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh during the period from January to May 2007. Ten different drugs such as Gentamicin (GM), Azithromycin (AZM), Erythromycin (E), Levofloxacin (LVX), Ciprofloxacin (CIP), Tetracycline (TE), Amoxicillin (A), Ampicillin (AP), Nalidixic acid (NA) and Metronidazole (MET) were used in this study. Sensitivity test was carried out by the Kirby-Bauer disc diffusion method as per recommendation of National Committee for Clinical Laboratory Standards and efficacy of a drug was determined by measuring the diameter of the zone of inhibition that results from diffusion of the agent in to the medium surrounding the disc. A high of 80% and 78% E. coli isolates collectively from all the selected sources were sensitive to LVX and CIP respectively, followed by GM (46%), AZM (45%), TE (30%), AP (29%), E (19%), NA (18%) and A (15%). No isolate was sensitive to MET (0%). Incase of resistance, 96% isolates were resistant to MET, followed by A (72%), E (69%), NA (67%), TE (60%), AP (59%), AZM (33%) and GM (32%), CIP (8%) and LVX (5%). A number of isolates showed intermediate reaction to GM (22%), AZM (22%), LVX (15%), NA (15%), CIP (14%), A(13%), AP (12%), E (12%), TE (10%) and MET (4%). This may be an intermediate phase for the conversion of E. coli isolates from sensitive to resistant form. From the research it may be concluded that E. coli infection of different animals and birds and also of human being may be treated effectively with LVX and CIP followed by GM and AZM. Key words: E. coli isolates, levofloxacin, ciprofloxacin, efficacy, resistance DOI = 10.3329/bjvm.v6i1.1332 Bangl. J. Vet. Med. (2008). 6 (1): 13-18


1998 ◽  
Vol 42 (8) ◽  
pp. 2002-2005 ◽  
Author(s):  
Melissa A. Visalli ◽  
Michael R. Jacobs ◽  
Peter C. Appelbaum

The present study examined the activities of trovafloxacin, levofloxacin, and ciprofloxacin, alone and in combination with cefoperazone, ceftazidime, cefpirome, and gentamicin, against 100 strains of Stenotrophomonas maltophilia by the MIC determination method and by synergy testing of the combinations by the time-kill and checkerboard titration methods for 20 strains. The respective MICs at which 50% and 90% of isolates were inhibited for the drugs used alone were as follows: trovafloxacin, 0.5 and 2.0 μg/ml; levofloxacin, 2.0 and 4.0 μg/ml; ciprofloxacin, 4.0 and 16.0 μg/ml; cefoperazone, >128.0 and >128.0 μg/ml; ceftazidime, 32.0 and >128.0 μg/ml; cefpirome, >128.0 and >128.0 μg/ml; and gentamicin, 128.0 and >128.0 μg/ml. Synergistic fractional inhibitory concentration indices (≤0.5) were found for ≥50% of strains for trovafloxacin-cefoperazone, trovafloxacin-ceftazidime, levofloxacin-cefoperazone, levofloxacin-ceftazidime, ciprofloxacin-cefoperazone, and ciprofloxacin-ceftazidime, with other combinations affecting fewer strains. For 20 strains tested by the checkerboard titration and time-kill methods, synergy (≥100-fold drop in count compared to the count achieved with the more active compound) was more pronounced after 12 h due to regrowth after 24 h. At 12 h, trovafloxacin at 0.004 to 0.5 μg/ml showed synergy with cefoperazone for 90% of strains, with ceftazidime for 95% of strains with cefpirome for 95% of strains, and with gentamicin for 65% of strains. Levofloxacin at 0.03 to 0.5 μg/ml and ciprofloxacin at 0.5 to 2.0 μg/ml showed synergy with cefoperazone for 80% of strains, with ceftazidime for 90 and 85% of strains, respectively, with cefpirome for 85 and 75% of strains, respectively, and with gentamicin for 65 and 75% of strains, respectively. Time-kill assays were more discriminatory than checkerboard titration assays in demonstrating synergy for all combinations.


1996 ◽  
Vol 40 (9) ◽  
pp. 1973-1976 ◽  
Author(s):  
S Bajaksouzian ◽  
M A Visalli ◽  
M R Jacobs ◽  
P C Appelbaum

The checkerboard titration method was used to test the synergy of cefpirome and cefotaxime with teicoplanin or vancomycin against 35 penicillin-susceptible, 34 penicillin-intermediate, and 31 penicillin-resistant pneumococci. The MICs at which 50 and 90% of isolates are inhibited (MIC50s and MIC90s, respectively) of both cefpirome and cefotaxime were 0.016 and 0.06 microgram/ml, respectively, for penicillin-susceptible strains and 0.125 and 0.5 microgram/ml, respectively, for penicillin-intermediate strains. The MIC50s and MIC90s of cefotaxime for penicillin-resistant strains were 1.0 and 2.0 micrograms/ml, respectively, and those of cefpirome were 0.5 and 1.0 microgram/ml, respectively. All pneumococci were inhibited by cefpirome at MICs of < or = 1.0 microgram/ml. The MIC50s and MIC90s of vancomycin and teicoplanin (0.25 and 0.25 microgram/ml and 0.03 and 0.03 microgram/ml, respectively) did not differ for the three groups. Checkerboard synergy studies showed that cefpirome and vancomycin showed synergy for 31 strains (fractional inhibitory concentration [FIC] indices, < or = 0.5) cefpirome and teicoplanin showed synergy for 18 strains, cefotaxime and vancomycin showed synergy for 51 strains, and cefotaxime and teicoplanin showed synergy for 27 strains. Cefpirome and vancomycin had FIC indices indicating indifference (2.0) for two strains, and cefotaxime and vancomycin had FIC indices indicating indifference for one strain. All other FIC indices indicating indifference or additivity were > 0.5 to 1.0. No FIC indices indicating antagonism (> 4.0) were found. Synergy between beta-lactams and glycopeptides for three susceptible, three intermediate, and three resistant strains were tested by the time-kill assay, and all combinations were synergistic by this method. Synergy between cephalosporins and glycopeptides can be demonstrated and may be useful for the treatment of pneumococcal infections, especially meningitis.


2019 ◽  
Vol 64 (No. 02) ◽  
pp. 67-77 ◽  
Author(s):  
K Nedbalcova ◽  
M Zouharova ◽  
D Sperling

The post-antibiotic effect is defined as the period of bacterial growth suppression that persists after a limited exposure of organisms to antimicrobials and knowledge of its duration is important in establishing and optimising current dosing schedules for the treatment of bacterial infections. The post-antibiotic effect of marbofloxacin, enrofloxacin and amoxicillin were evaluated in vitro for Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida strains which originated from clinical samples of diseased pigs and were confirmed as susceptible to all tested antimicrobials based on determination of minimal inhibitory concentrations. The post-antibiotic effect for individual antimicrobials was monitored at five and ten times minimum inhibitory concentrations for one and two hours. The duration of the post-antibiotic effect for tested antimicrobials was found to exhibit the following order for all tested pathogens: marbofloxacin &gt; enrofloxacin &gt; amoxicillin. The longest duration of post-antibiotic effect of all tested antimicrobials was found in A. pleuropneumoniae and the shortest post-antibiotic effect duration was detected in P. multocida. No statistical differences in post-antibiotic effect duration were found within marbofloxacin and enrofloxacin in A. pleuropneumoniae and H. parasuis strains. In P. multocida strains there was a statistically significant difference (P = 0.0189). On the other hand, the differences between amoxicillin and marbofloxacin or enrofloxacin were statistically significant in all cases (P-values ranged between 0.0058 and 0.008). The prolonged post-antibiotic effect of fluoroquinolones and amoxicillin on important Gram-negative swine pathogens was confirmed. The results can be used to clarify the effect and mechanism of action of antimicrobial drugs in veterinary medicine.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 696 ◽  
Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Razieh Kebriaei ◽  
Kyle C. Stamper ◽  
Zain Sheikh ◽  
Philip T. Maassen ◽  
...  

The most efficacious antimicrobial therapy to aid in the successful elimination of resistant S. aureus infections is unknown. In this study, we evaluated varying phenotypes of S. aureus against dalbavancin (DAL), vancomycin (VAN), and daptomycin (DAP) alone and in combination with cefazolin (CFZ). The objective of this study was to observe whether there was a therapeutic improvement in adding a beta-lactam to a glycopeptide, lipopeptide, or a lipoglycopeptide. We completed a series of in vitro tests including minimum inhibitory concentration testing (MIC) of the antimicrobials in combination, time-kill analysis (TKA), and a 168 h (7-day) one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model on two daptomycin non-susceptible (DNS), vancomycin intermediate S. aureus strains (VISA), D712 and 6913. Results from our MIC testing demonstrated a minimum 2-fold and a maximum 32-fold reduction in MIC values for DAL, VAN, and DAP in combination with CFZ, in contrast to either agent used alone. The TKAs completed on four strains paralleled the enhanced activity demonstrated via the combination MICs. In the one-compartment PK/PD models, the combination of DAP plus CFZ or VAN plus CFZ resulted in a significant (p < 0.001) improvement in bactericidal activity and overall reduction in CFU/ml over the 7-day period. While the addition of CFZ to DAL improved time to bactericidal activity, DAL alone demonstrated equal and more sustained overall activity compared to all other treatments. The use of DAL alone, with or without CFZ and the combinations of VAN or DAP with CFZ appear to result in increased bactericidal activity against various recalcitrant S. aureus phenotypes.


Sign in / Sign up

Export Citation Format

Share Document