scholarly journals Logic Learning in Adaline Neural Network

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Nadia Athirah Norani ◽  
Mohd Shareduwan Mohd Kasihmuddin ◽  
Mohd. Asyraf Mansor ◽  
Noor Saifurina Nana Khurizan

In this paper, Adaline Neural Network (ADNN) has been explored to simulate the actual signal processing between input and output. One of the drawback of the conventional ADNN is the use of the non-systematic rule that defines the learning of the network. This research incorporates logic programming that consists of various prominent logical representation. These logical rules will be a symbolic rule that defines the learning mechanism of ADNN. All the mentioned logical rule are tested with different learning rate that leads to minimization of the Mean Square Error (MSE). This paper uncovered the best logical rule that could be governed in ADNN with the lowest MSE value. The thorough comparison of the performance of the ADNN was discussed based on the performance MSE. The outcome obtained from this paper will be beneficial in various field of knowledge that requires immense data processing effort such as in engineering, healthcare, marketing, and business.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1292
Author(s):  
Muna Mohammed Bazuhair ◽  
Siti Zulaikha Mohd Jamaludin ◽  
Nur Ezlin Zamri ◽  
Mohd Shareduwan Mohd Kasihmuddin ◽  
Mohd. Asyraf Mansor ◽  
...  

One of the influential models in the artificial neural network (ANN) research field for addressing the issue of knowledge in the non-systematic logical rule is Random k Satisfiability. In this context, knowledge structure representation is also the potential application of Random k Satisfiability. Despite many attempts to represent logical rules in a non-systematic structure, previous studies have failed to consider higher-order logical rules. As the amount of information in the logical rule increases, the proposed network is unable to proceed to the retrieval phase, where the behavior of the Random Satisfiability can be observed. This study approaches these issues by proposing higher-order Random k Satisfiability for k ≤ 3 in the Hopfield Neural Network (HNN). In this regard, introducing the 3 Satisfiability logical rule to the existing network increases the synaptic weight dimensions in Lyapunov’s energy function and local field. In this study, we proposed an Election Algorithm (EA) to optimize the learning phase of HNN to compensate for the high computational complexity during the learning phase. This research extensively evaluates the proposed model using various performance metrics. The main findings of this research indicated the compatibility and performance of Random 3 Satisfiability logical representation during the learning and retrieval phase via EA with HNN in terms of error evaluations, energy analysis, similarity indices, and variability measures. The results also emphasized that the proposed Random 3 Satisfiability representation incorporates with EA in HNN is capable to optimize the learning and retrieval phase as compared to the conventional model, which deployed Exhaustive Search (ES).


2018 ◽  
Vol 10 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Rizqa Raaiqa Bintana ◽  
Chastine Fatichah ◽  
Diana Purwitasari

Community-based question answering (CQA) is formed to help people who search information that they need through a community. One condition that may occurs in CQA is when people cannot obtain the information that they need, thus they will post a new question. This condition can cause CQA archive increased because of duplicated questions. Therefore, it becomes important problems to find semantically similar questions from CQA archive towards a new question. In this study, we use convolutional neural network methods for semantic modeling of sentence to obtain words that they represent the content of documents and new question. The result for the process of finding the same question semantically to a new question (query) from the question-answer documents archive using the convolutional neural network method, obtained the mean average precision value is 0,422. Whereas by using vector space model, as a comparison, obtained mean average precision value is 0,282. Index Terms—community-based question answering, convolutional neural network, question retrieval


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Qi ◽  
Yanan Zhao ◽  
Yufang Huang ◽  
Yang Wang ◽  
Wei Qin ◽  
...  

AbstractThe accurate and nondestructive assessment of leaf nitrogen (N) is very important for N management in winter wheat fields. Mobile phones are now being used as an additional N diagnostic tool. To overcome the drawbacks of traditional digital camera diagnostic methods, a histogram-based method was proposed and compared with the traditional methods. Here, the field N level of six different wheat cultivars was assessed to obtain canopy images, leaf N content, and yield. The stability and accuracy of the index histogram and index mean value of the canopy images in different wheat cultivars were compared based on their correlation with leaf N and yield, following which the best diagnosis and prediction model was selected using the neural network model. The results showed that N application significantly affected the leaf N content and yield of wheat, as well as the hue of the canopy images and plant coverage. Compared with the mean value of the canopy image color parameters, the histogram could reflect both the crop coverage and the overall color information. The histogram thus had a high linear correlation with leaf N content and yield and a relatively stable correlation across different growth stages. Peak b of the histogram changed with the increase in leaf N content during the reviving stage of wheat. The histogram of the canopy image color parameters had a good correlation with leaf N content and yield. Through the neural network training and estimation model, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the estimated and measured values of leaf N content and yield were smaller for the index histogram (0.465, 9.65%, and 465.12, 5.5% respectively) than the index mean value of the canopy images (0.526, 12.53% and 593.52, 7.83% respectively), suggesting a good fit for the index histogram image color and robustness in estimating N content and yield. Hence, the use of the histogram model with a smartphone has great potential application in N diagnosis and prediction for wheat and other cereal crops.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 403
Author(s):  
Xun Zhang ◽  
Lanyan Yang ◽  
Bin Zhang ◽  
Ying Liu ◽  
Dong Jiang ◽  
...  

The problem of extracting meaningful data through graph analysis spans a range of different fields, such as social networks, knowledge graphs, citation networks, the World Wide Web, and so on. As increasingly structured data become available, the importance of being able to effectively mine and learn from such data continues to grow. In this paper, we propose the multi-scale aggregation graph neural network based on feature similarity (MAGN), a novel graph neural network defined in the vertex domain. Our model provides a simple and general semi-supervised learning method for graph-structured data, in which only a very small part of the data is labeled as the training set. We first construct a similarity matrix by calculating the similarity of original features between all adjacent node pairs, and then generate a set of feature extractors utilizing the similarity matrix to perform multi-scale feature propagation on graphs. The output of multi-scale feature propagation is finally aggregated by using the mean-pooling operation. Our method aims to improve the model representation ability via multi-scale neighborhood aggregation based on feature similarity. Extensive experimental evaluation on various open benchmarks shows the competitive performance of our method compared to a variety of popular architectures.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ivana Sušanj ◽  
Nevenka Ožanić ◽  
Ivan Marović

In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS) to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN) as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.


Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.


2015 ◽  
Vol 737 ◽  
pp. 9-13
Author(s):  
Jun Zhang ◽  
Yuan Hao Wang ◽  
Ying Yi Li ◽  
Feng Guo

With the wind farm data from the southeast coast this paper builds a two-stage combination forecasting model of output power based on data preprocessing which include filling up missing data and pre-decomposition. The first stage is a composite prediction of decomposed power sequence in which a time series and optimized BP neural network predict the general trend and the correlation of various factors respectively. The second stage is BP neural network with its input is the results of first stage. The effectiveness and accuracy of the two-stage combination model are verified by comparing the mean square error of the combination model and other models.


Sign in / Sign up

Export Citation Format

Share Document