scholarly journals INFLUENCE OF PROCESS PARAMETERS ON MECHANICAL PROPERTIES OF FRICTION STIR WELDED AA 6061-T6 ALLOY AND MG AZ31B ALLOY

Author(s):  
S. UGENDER ◽  
A. KUMAR ◽  
A. SOMI REDDY ◽  
A. DEVARAJU

The present study investigates the influence of tool pin profiles on microstructure and mechanical properties of friction stir welded AA 6061-T6 Alloy was studied. An attempt is made here to review the fundamental principle of this process its tensile strength and examination of its metallurgical consequences. An improved milling machine is fabricated for performing friction stir welding and its effectiveness in joining Al 6061-T6 Alloy plates is demonstrated in the current work. The FSW Process has proved to be very efficient and has immense potential for future application. Present investigation is to find out the optimum mechanical properties of friction stir welding of Al 6061-T6 alloy &Mg AZ31B alloy. In this present study an attempt has been made to study the effect of tool rotational speed, traversing speed and tool pin profiles (Taper Thread profile) on FSW zone transformation in Al and Mg alloys. For three different tools, rotational speeds, three different traversing speeds, and three different tool D/d ratios, one tool pin profile have been used to fabricate the joints. The formation of FSW of Al 6061 of fusion zone has been evaluated and correlated with base metal. Tensile properties, toughness and microstructure of the joint were evaluated and correlated as received Al 6061-T6 & Mg AZ31B alloys. The joints fabricated using rotational speed of 1120rpm, a welding speed of 40 mm/min, taper thread pin profile, tool shoulder diameter of 18 mm, (D/d)=3.0 showed higher tensile properties compared to other joints.

Author(s):  
C Ganesan ◽  
K Manonmani

Friction stir welding is a high potential technology for joining similar and dissimilar aluminum materials, utilized extensively in aerospace and automotive industrial applications to eradicate the problems like hot cracking, porosity, element loss, etc. due to the fusion welding process. This Research addresses the joining of two dissimilar materials of AA 5754 – H32 and AA 8090T6511 – Al-Li and their mechanical properties analysis with the effects of friction stir welding process parameters like tool rotational speed, welding speed and axial load on weld nugget zone formation quality. The significant roles of different tool pin profiles are also emphasized. A mathematical modeling equation was formed by using regression analysis to optimize the process parameter and found the best tool pin profile for defect-free weld nugget zone and higher tensile and hardness properties. This research also portrays the contribution of various pin profiles and each process parameter on the ultimate tensile strength by response surface methodology. The results indicate that the defect-free weld joints are observed with 1800 r/min of rotational speed, welding speed of 15 mm min−1 and 8.5 kN of axial load with hexagonal pin profile.


Author(s):  
Laxmana Raju Salavaravu ◽  
Lingaraju Dumpala

Submerged friction stir welding (FSW) is used to improve the weld zones mechanical properties in the present study. This research aims to obtain the optimized process parameters used to fabricate the AA6063 Submerged FSW joint. In the Submerged FSW process, the most important influential factors are tool rotational speed, traverse speed, and pin profile in a seawater environment. The different workpieces are friction stir welded while submerged in seawater at different tool rotational speeds, traverse speeds, and tool pin profiles such as square pin, cylindrical taper pin, and threaded pin. The produced weldments were tested for the mechanical properties of higher tensile strength, microhardness, corrosion rate, and the microstructure of weldments was characterized by using a scanning electron microscope, transmission electron microscope, and X-ray diffractometer. The corrosion rate is investigated by using an electrochemical analyzer by potential dynamic polarization open-circuit technique. For this investigation, The Taguchi method with the L9 orthogonal array design of experimentation is adopted. The maximum UTS was acquired in the weld joint fabricated with 1250 r/min of tool rotational speed, 45 mm/min traverse speed, and a square tool pin. The stirred zone is tested for microhardness. High hardness is achieved with high tool rotational speed and low traverse speed with a square tool pin profile. The corrosion rate is also decreased with high tool rotational speed, low traverse speed, and a square tool pin profile.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bhanodaya Kiran Babu Nadikudi

PurposeThe main purpose of the present work is to study the effect of tool pin profiles on mechanical properties of welded plates made with two different aluminium alloy plates.Design/methodology/approachThe welded plates were fabricated with the three different kinds of pin profiled tools such as taper cylindrical, taper threaded cylindrical and stepped cylindrical pin profiles. Tensile properties of welded plates were evaluated using tensile testing machine at room temperature. Microstructures studies were carried out using scanning electron microscope.FindingsTensile properties were improved with the use of taper threaded cylindrical pin tool in friction stir welding process when compared with taper cylindrical and stepped cylindrical pin tools. This is due to refinement of grains and mixing of plasticized material occurred with generation of sufficient heat with the taper threaded pin tool. Through these studies, it was confirmed that friction stir welding can be used to weld Al6061 and Al2014 aluminium alloy plates.Research limitations/implicationsIn the present study, the friction stir welding is performed with constant process parameters such as tool rotational speed of 900 rpm, transverse speed of 24 mm/min and tilt angle of 1°.Practical implicationsAluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property. These aluminium alloy blanks can be developed with friction stir welding method with better properties.Originality/valueVery limited work had been carried out on friction stir welding of aluminium alloys of Al 6061 and Al2014 with different tool pin profiles. Furthermore, this work analyzed with tensile properties of welded plates correlated with weld zone microstructures.


Author(s):  
Adel Sedaghati ◽  
Hamed Bouzary

In this paper, the effect of water cooling on mechanical properties and microstructure of AA5086 aluminum joints during friction stir welding is investigated. For doing so, the mechanical and microstructural behavior of samples welded both in air and in water was analyzed. Tests were performed involving both butt and lap welds and the results were compared. The effect of rotational speed at constant feed rate of 50 mm/min and changing rotational speed ranging from 250 to 1250 r/min was investigated. The results showed a significant change in the tensile behavior of the butt-welded specimens due to water cooling. In addition, welding was performed at constant spindle speed of 800 r/min and various traverse speeds (25 mm/min to 80 mm/min) to determine the effect of feed rate. The strength increases at first, but then decreases dramatically along with the feed rate which is due to the occurrence of a groove defect. Results showed some generally positive impacts of water cooling which are discussed in terms of tensile results, hardness distributions and microstructure analysis.


2011 ◽  
Vol 295-297 ◽  
pp. 1929-1932
Author(s):  
Yi Min Tu ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Xin Zhang ◽  
Ke Ke Zhang

In order to obtain better understanding of the friction stir weldability of the magnesium alloy and provide some foundational information for improving mechanical properties of retardant magnesium alloy joints. A retardant magnesium alloy was weld using the method of friction stir welding. The influence of welding parameters on the strength of the joint was investigated. The maximum strength of 230 MPa was obtained from the joint welded at the tool rotational speed of 1000 r/min and welding speed of 750 mm/min.


2013 ◽  
Vol 446-447 ◽  
pp. 312-315
Author(s):  
Ramaraju Ramgopal Varma ◽  
Abdullah Bin Ibrahim ◽  
B. Ravinder Reddy

The present research paper aims in evaluating the strength of the welded AA6351 alloy plates of 6 mm thick by using friction stir welding technique at different rotational speeds The applied welding technique is capable of achieving the mechanical properties of the alloy close to that of the original alloy. In the present investigation, the speeds of the spindle were varied from 1100 rpm to 1500 rpm with a constant transverse speed of 20 mm/min. The tensile strength of the joints is determined by an universal testing machine. The results from the present investigation show that the values of the yield strength were very much closer to the values of the AA6351Alloy prior to welding. It has been found from the experiments that the strength of the joints increases with the increase in the rotational speed; however, the same is decreasing after achieving certain speed.


2014 ◽  
Author(s):  
Xun Liu ◽  
Shuhuai Lan ◽  
Jun Ni

Friction stir welding (FSW) of dissimilar Al 6061 and TRIP 780/800 steel has been performed under different process parameters, including tool rotational speed, welding speed as well as the relative position of the tool axis to the abutting edge. Temperature and mechanical welding force was recorded during the process. Welding speed has an insignificant effect on either the maximum temperature or welding force. However, it can directly change the length of high temperature duration, which will accordingly influence temperature distribution in the weld and the microstructure. Higher rotational speed can effectively elevate weld temperature through greater amount of heat input. Metallurgical observations on weld cross sections perpendicular to the joint line was performed using both optical and scanning electron microscope. Microstructure evolution was analyzed and related to the force and temperature measurement results during the FSW process.


Sign in / Sign up

Export Citation Format

Share Document