scholarly journals Human Capital And Large Scale PV Deployment

Author(s):  
Biswajit Ghosh

Energy is one of the central parameters required for human survival after food. “Knowledge is power” and renewable energy plays increasingly important role to run knowledge-based society for sustainable social and economic development. Out of these, solar photovoltaic (PV) energy system is a useful tool to run the knowledge based systems. Apart from research and development, PV systems need suitable human capital for its successful penetration into every nook and corner of the society. The main aim of the present paper is to address the quality and quantity of human capital need in future to bring the solar PV power in the world electric power budget. Analyses on the chronology of PV power systems indicated that PV would be equivalent to other conventional power sources by the year 2023. Proper implementation of PV power systems needs three levels of human capital and these are i. Skilled technicians ii. Experienced technologists and iii. Efficient executives. While the technicians would be involved in the installation, operation, maintenance and monitoring of solar PV systems, technologists need to provide the basis for the liberalization of PV systems and the executives need to develop its market, policy, planning and execution. Academic and research institutions need to develop these types of human capital to match with future demand of the PV power systems. Market and human capital are interdependent and the market for clean energy depends on issues like energy security, climate change, fossil fuel depletion, new and novel technologies and environmentally conscious consumers. The future PV market depends upon how powerful these forces are individually and collectively. Thus the PV communities need to build up human capital as well as newer market to generate demand for human resource for better dissemination of PV power.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8529
Author(s):  
Dhanuja Lekshmi J ◽  
Zakir Hussain Rather ◽  
Bikash C Pal

With diminishing fossil fuel resources and increasing environmental concerns, large-scale deployment of Renewable Energy Sources (RES) has accelerated the transition towards clean energy systems, leading to significant RES generation share in power systems worldwide. Among different RES, solar PV is receiving major focus as it is most abundant in nature compared to others, complimented by falling prices of PV technology. However, variable, intermittent and non-synchronous nature of PV power generation technology introduces several technical challenges, ranging from short-term issues, such as low inertia, frequency stability, voltage stability and small signal stability, to long-term issues, such as unit commitment and scheduling issues. Therefore, such technical issues often limit the amount of non-synchronous instantaneous power that can be securely accommodated by a grid. In this backdrop, this research work proposes a tool to estimate maximum PV penetration level that a given power system can securely accommodate for a given unit commitment interval. The proposed tool will consider voltage and frequency while estimating maximum PV power penetration of a system. The tool will be useful to a system operator in assessing grid stability and security under a given generation mix, network topology and PV penetration level. Besides estimating maximum PV penetration, the proposed tool provides useful inputs to the system operator which will allow the operator to take necessary actions to handle high PV penetration in a secure and stable manner.


2020 ◽  
Author(s):  
Congmei Jiang ◽  
Yongfang Mao ◽  
Yi Chai ◽  
Mingbiao Yu

<p>With the increasing penetration of renewable resources such as wind and solar, the operation and planning of power systems, especially in terms of large-scale integration, are faced with great risks due to the inherent stochasticity of natural resources. Although this uncertainty can be anticipated, the timing, magnitude, and duration of fluctuations cannot be predicted accurately. In addition, the outputs of renewable power sources are correlated in space and time, and this brings further challenges for predicting the characteristics of their future behavior. To address these issues, this paper describes an unsupervised method for renewable scenario forecasts that considers spatiotemporal correlations based on generative adversarial networks (GANs), which have been shown to generate high-quality samples. We first utilized an improved GAN to learn unknown data distributions and model the dynamic processes of renewable resources. We then generated a large number of forecasted scenarios using stochastic constrained optimization. For validation, we used power-generation data from the National Renewable Energy Laboratory wind and solar integration datasets. The experimental results validated the effectiveness of our proposed method and indicated that it has significant potential in renewable scenario analysis.</p>


2021 ◽  
Author(s):  
Kristian Mikalsen

Abstract This paper demonstrates a pioneering technology adaption for using a membrane-based subsea storage solution for oil/condensate, modified into storing clean energy storage in the form of ammonia (as a hydrogen energy carrier). The immediate application will provide an economical alternative to electrification of offshore platforms, instead of using expensive cables from shore. Storing ammonia at the seabed using innovative subsea storage technologies will dramatically reduce CO2 emissions for offshore assets. The fluid will be stored in a safe manner on the seafloor, protecting both personnel and marine life. The next step will be to include subsea ammonia storage as part of the global logistical value chain, which can power the merchant shipping fleet. Clean ammonia can be produced using renewable resources as wind or solar. It focuses on bridging the ongoing oil/condensate storage qualification, adapted into storing ammonia. The large-scale verification test scope is explained, and we show how the test is extended to also prove the concept of safe energy/ammonia storage. The ammonia storage concept is explained, and we show how this can be included as part of a low carbon future. The focus is the immediate market for providing clean power to existing or new offshore assets. The full system solution will encompass storage tanks placed nearby the platforms at safe water depths, riser systems providing fuel to the ammonia power generators, and the tank filling systems. Bridging and adapting technologies from the petroleum industry into renewables shows the importance of utilizing the technology developments and competence of the oil and gas business. The technical evaluations have shown that the oil/condensate storage can be adapted into storing energy/ammonia with minor modifications. Converting hydrogen into ammonia gives slight energy losses, but it is defended by the large economic benefits of storing ammonia versus pressure storage of hydrogen. The paper presents qualification work already completed and how to implement ammonia fuel storage for platforms. In addition, we show the test setup for a large-scale qualification provided by an original equipment manufacturer (OEM) company together with major Operators. Innovative modular design methods have shown that the concept can be included on existing offshore assets, which have limited topside space available. Adding green or blue ammonia as an alternative to power cables from shore have several benefits, and many of the connecting building blocks are falling into place. The main conclusion is how to adapt Novel technologies from the oil industry to store ammonia in a safe way on the seafloor.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1443 ◽  
Author(s):  
Abdullah Alshahrani ◽  
Siddig Omer ◽  
Yuehong Su ◽  
Elamin Mohamed ◽  
Saleh Alotaibi

Decarbonisation, energy security and expanding energy access are the main driving forces behind the worldwide increasing attention in renewable energy. This paper focuses on the solar photovoltaic (PV) technology because, currently, it has the most attention in the energy sector due to the sharp drop in the solar PV system cost, which was one of the main barriers of PV large-scale deployment. Firstly, this paper extensively reviews the technical challenges, potential technical solutions and the research carried out in integrating high shares of small-scale PV systems into the distribution network of the grid in order to give a clearer picture of the impact since most of the PV systems installations were at small scales and connected into the distribution network. The paper reviews the localised technical challenges, grid stability challenges and technical solutions on integrating large-scale PV systems into the transmission network of the grid. In addition, the current practices for managing the variability of large-scale PV systems by the grid operators are discussed. Finally, this paper concludes by summarising the critical technical aspects facing the integration of the PV system depending on their size into the grid, in which it provides a strong point of reference and a useful framework for the researchers planning to exploit this field further on.


Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.


2020 ◽  
Vol 8 (5) ◽  
pp. 2326-2333

Uneconomical augmentation of the grid framework has prompted the usage of electric power toward the end users and has been demonstrated to be practical and to a degree effective. With expanded criticalness on eco-accommodating innovations the utilization of sustainable power sources, for example, small scale hydro, wind, solar, biomass and biogas is being investigated. This paper introduces the potential effects of matrix associated photovoltaic (PV) array on electrical systems demonstrated using the Electrical Transient and Analysis Program (ETAP) software by validating the system performance parameters of the Deetyakhedi Feeder in Jhalawar district, Rajasthan under different loading conditions on Grid failure and the Sub-feeder disconnection case. This paper elaborates by underlining the significance of generating power from PV panels which exhibits and explains the development in solar technology. Effects of framework associated with solar PV Electricity on Power Systems are additionally discussed in this paper pursued by the authors' synopsis from the various writing's and discoveries with respect to the greatest suitable Solar PV infiltration that can be securely incorporated into existing systems by analyzing the System performance of the Grid Integrated Distributed Generator using ETAP Software. The conclusion covers the various Loading conditions at the Grid failure case and the Sub-Feeder disconnection case evaluating various conditions under which the system again regains its stability after specific time intervals.


2019 ◽  
Vol 9 (3) ◽  
pp. 518 ◽  
Author(s):  
Peicong Luo ◽  
Xiaoying Wang ◽  
Hailong Jin ◽  
Yuling Li ◽  
Xuejiao Yang

Recently, as renewable and distributed power sources boost, many such resources are integrated into the smart grid as a clean energy input. However, since the generation of renewable energy is intermittent and unstable, the smart grid needs to regulate the load to maintain stability after integrating the renewable energy source. At the same time, with the development of cloud computing, large-scale datacenters are becoming potentially controllable loads for the smart grid due to their high energy consumption. In this paper, we propose an appropriate approach to dynamically adjust the datacenter load to balance the unstable renewable energy input into the grid. This could meet the demand response requirements by taking advantage of the variable power consumption of datacenters. We have examined the scenarios of one or more datacenters being integrated into the grid and adopted a stochastic algorithm to solve the problem we established. The experimental results illustrated that the dynamic load management of multiple datacenters could help the smart grid to reduce losses and thus save operational costs. Besides, we also analyzed the impact of the flexibility and the delay of datacenter actions, which could be applied to more general scenarios in realistic environments. Furthermore, considering the impact of the action delay, we employed a forecasting method to predict renewable energy generation in advance to eliminate the extra losses brought by the delay as much as possible. By predicting solar power generation, the improved results showed that the proposed method was effective and feasible under both sunny and cloudy/rainy/snowy weather conditions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mahmoud Laajimi ◽  
Yun Ii Go

AbstractLarge-scale solar is a non-reversible trend in the energy mix of Malaysia. Due to the mismatch between the peak of solar energy generation and the peak demand, energy storage projects are essential and crucial to optimize the use of this renewable resource. Although the technical and environmental benefits of such transition have been examined, the profitability of energy storage systems combined with large-scale solar PV has not been studied in Malaysia. This project aims to determine the most profitable business model of power systems, in terms of PV installed capacity, and energy storage capacity, and power system components. A comparative study has been done to compare the economic outcomes from different types of projects, with different scales and multiple configurations of large-scale solar PV combined with energy storage. The lowest values of LCOE are guaranteed with energy storage output to LSS output ratio, A = 5%. In this case, 30-MW projects have the cheapest electricity, equal to RM 0.2484/kWh. On the other hand, increasing the energy storage output to LSS output ratio, A to 60% results in the increase of LCOE, exceeding RM 0.47/kWh. On the economical side, with a difference of 0.06 kWh/m2/day for the analysis carried out in Pahang and Perak, the difference in net present worth is more than 7.5% of the net present cost. The difference between the two locations is comparatively higher for 50-MW projects. It is equal to RM 11.67 Million for A = 60%, while it is equal to RM 13.5 Million with A = 5%. Due to the energy prices in Malaysia, the projects that include large-scale solar only are more profitable technically and financially than those including large-scale solar and energy storage. It is found that adding storage to a large-scale solar project is more profitable technically and financially with greater large-scale solar capacities and smaller storage capacities. Nevertheless, with the current energy prices in Malaysia, projects that include only energy storage are not financially profitable. This study determined the parameters that affect the profitability of large-scale solar energy projects and energy storage projects, and the configurations that maximize financial profits. The findings of this study are useful for the future regulations that intend to enhance the deployment of large-scale solar PV and energy storage in Malaysia.


In India, Electrical Power System is adapted to handle both constant loads and variable loads, also power is generated in two types; one is due to fossil fuels, and another one is due to renewable energy sources. However, renewable energy sources are playing a vital role in the production of clean energy and also useful for the reduction in greenhouse emission. Nevertheless, when there is any additional change in the generation side concerning to input supply, which is due to the uncertainty of nature, can create new challenges for the system operators and utility centers. It is not an easy task for the utility centres and supply operators to integrate variable renewable energy sources with the utility grid. This paper explores an overview of some operational techniques and solutions, which are helpful for high penetration of renewable energy sources such as solar and wind energy. It also explores operation, control management and challenges due to renewable energy when they integrated with the utility grid. By interfacing of renewable energy sources with a utility grid with proper management and control can provide bi-directional communication between suppliers and consumers smartly. The aim of integrating large scale renewable sources from transmission and distribution network into an existing system is to reduce the power quality issues, demand response, forecasting, peak demand, and improve network security, fast scheduling and dispatch, aiming towards smart grid technology for electrical power systems.


Sign in / Sign up

Export Citation Format

Share Document