scholarly journals Covid and Oxytocin: Looking for Microbial Symbiosis

2021 ◽  
Vol 8 (10) ◽  
pp. 279-283
Author(s):  
Oleg V. Bukharin ◽  
Natalya B. Perunova ◽  
Phuoc-Tan Diep ◽  
Elena V. Ivanova

Oxytocin is a hormone with broad implications for general health. This hormone has anti-inflammatory and antioxidant protective effects and has received particular attention due to the pandemic of COVID-19. This review examines materials on the role of microbial symbiosis in COVID-19 and the effect of microbiota on oxytocin. It opens new potential prospects for the use of microbiota and new “nature-like” technologies.

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3064 ◽  
Author(s):  
Yuzhu He ◽  
Byung-gook Kim ◽  
Hye-Eun Kim ◽  
Qiaochu Sun ◽  
Shuhan Shi ◽  
...  

Epidermal inflammation is caused by various bacterial infectious diseases that impair the skin health. Feruloylserotonin (FS) belongs to the hydroxycinnamic acid amides of serotonin, which mainly exists in safflower seeds and has been proven to have anti-inflammatory and antioxidant activities. Human epidermis mainly comprises keratinocytes whose inflammation causes skin problems. This study investigated the protective effects of FS on the keratinocyte with lipopolysaccharides (LPS)-induced human HaCaT cells and elucidated its underlying mechanisms of action. The mechanism was investigated by analyzing cell viability, PGE2 levels, cell apoptosis, nuclear factor erythroid 2-related factor 2 (Nrf2) translocation, and TLR4/NF-κB pathway. The anti-inflammatory effects of FS were assessed by inhibiting the inflammation via down-regulating the TLR4/NF-κB pathway. Additionally, FS promoted Nrf2 translocation to the nucleus, indicating that FS showed anti-oxidative activities. Furthermore, the antioxidative and anti-inflammatory effects of FS were found to benefit each other, but were independent. Thus, FS can be used as a component to manage epidermal inflammation due to its anti-inflammatory and anti-oxidative properties.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Luciano S. A. Capettini ◽  
Silvia Q. Savergnini ◽  
Rafaela F. da Silva ◽  
Nikos Stergiopulos ◽  
Robson A. S. Santos ◽  
...  

Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1) and type 2 (CB2) transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role ofCB1andCB2receptors in ischemic stroke. WhileCB1receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, theCB2activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke.


2020 ◽  
Vol 24 (4) ◽  
pp. 196-203
Author(s):  
Jang Mee Kim ◽  
Ji Yeon Lee

Intrauterine inflammation is defined as the inflammation of the chorion, amnion, and placenta. Untreated inflammation increases the risk of fetal inflammatory response syndrome, which may result in multiorgan diseases involving the brain, cardiovascular system, lung, eye, and intestine. Therefore, controlling inflammation is critical in pregnant women to reduce the risk of diseases. However, there are no safe and effective anti-inflammatory drugs for administration during pregnancy. Although the primary function of melatonin is to control circadian rhythms, it has protective effects against cellular insults occurring from hypoxia, oxidative stress, and inflammation. While animal studies support the effective and safe role of melatonin in improving pregnancy-related morbidities, it leaves plenty of opportunities for clinical studies investigating its anti-inflammatory, antioxidant, and protective effects against insults induced by intrauterine inflammation. Therefore, it will be worthwhile to investigate antenatal supplementation of melatonin in pregnant women with intrauterine inflammation to reduce the incidence of associated comorbidities.


2016 ◽  
Vol 7 (1) ◽  
pp. 398-408 ◽  
Author(s):  
Paulrayer Antonisamy ◽  
Mariadhas Valan Arasu ◽  
Muniappan Dhanasekaran ◽  
Ki Choon Choi ◽  
Adithan Aravinthan ◽  
...  

The gastroprotective activity of trigonelline against indomethacin-induced ulcer and the role of anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms have been explored.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 93-94
Author(s):  
J Grondin ◽  
H Wang ◽  
S Haq ◽  
E Y Kwon ◽  
M Surette ◽  
...  

Abstract Background Akkermansia muciniphila, an anaerobic gram-negative bacteria, accounts for ~3% of human gut microbiota. Despite its mucolytic nature, A. muciniphila has been shown to stimulate mucin production, enhance anti-inflammatory regulatory T cell proliferation and improve gut barrier integrity. Interestingly, an inverse relationship has been established between A. muciniphila and several disease states including inflammatory bowel disease (IBD) suggesting it may have protective and anti-inflammatory effects. However, the precise role and mechanism of A. muciniphila in the pathogenesis of colitis remains unknown. Thus, we hypothesize that A. muciniphila may induce protective effects on intestinal inflammation by influencing host immune response and epithelial barrier integrity. Aims (1) To investigate the protective role of A. muciniphila in intestinal inflammation in a chemically induced model of IBD and (2) to investigate the protective role of A. muciniphila in intestinal inflammation and host defense in a model of enteric parasitic infection. Methods Colitis was induced in germ-free C57BL/6 mice with 2.5% dextran sulphate sodium (DSS) after treatment with either C57BL/6 wild-type (WT) cecal contents or WT cecal contents supplemented with A. muciniphila. Colitis severity was assessed by disease activity index (DAI), macroscopic and histological scores, myeloperoxidase (MPO) assay and cytokine expression. In addition, colitis was induced by Trichuris muris, an intestinal nematode, following treatment with A. muciniphila. Post-infection, the severity of intestinal inflammation was assessed by worm burden, goblet cell staining, cytokines analysis, MPO activity and Muc2 expression. Microbial composition was assessed by 16s rRNA gene sequencing. Results In preliminary studies, mice treated with A. muciniphila and administered DSS for 5 days yielded a significant decrease in DAI, macroscopic scoring, and MPO values compared with controls. IL-10 was also elevated in mice receiving A. muciniphila. Groups receiving A. muciniphila in the T. muris model trended toward decreased worm burden, IL-4, IL-13, as well as increased levels of IL-10, goblet cell expression, and Muc2 and Muc5ac expression. A significant decrease in MPO activity was also observed in the group receiving the A. muciniphila-supplemented gavage. Microbial analysis indicated that 3 weeks post-gavage Akkermansia levels were significantly elevated in groups receiving the A. muciniphila-supplemented WT cecal contents versus WT alone. This significance was maintained post-T. muris infection. Conclusions These findings suggest that A. muciniphila may have a protective role in the context of intestinal inflammation. This research has the potential to fuel the development of novel treatments by utilizing this protective role in IBD. Funding Agencies CIHR


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhangci Su ◽  
Xiaoan Tao

IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiyuan Yan ◽  
Bowei Ni ◽  
Gaohong Sheng ◽  
Yingchi Zhang ◽  
Yifan Xiao ◽  
...  

Osteoarthritis (OA) is a common age-related joint disease. Its development has been generally thought to be associated with inflammation and autophagy. Rhoifolin (ROF), a flavanone extracted from Rhus succedanea, has exhibited prominent anti-oxidative and anti-inflammatory properties in several diseases. However the exact role of ROF in OA remains unclear. Here, we investigated the therapeutic effects as well as the underlying mechanism of ROF on rat OA. Our results indicated that ROF could significantly alleviate the IL-1β–induced inflammatory responses, cartilage degradation, and autophagy downregulation in rat chondrocytes. Moreover, administration of autophagy inhibitor 3-methyladenine (3-MA) could reverse the anti-inflammatory and anti-cartilage degradation effects of ROF. Furthermore, P38/JNK and PI3K/AKT/mTOR signal pathways were involved in the protective effects of ROF. In vivo, intra-articular injection of ROF could notably ameliorate the cartilage damage in rat OA model. In conclusion, our work elucidated that ROF ameliorated rat OA via regulating autophagy, indicating the potential role of ROF in OA therapy.


2011 ◽  
Vol 23 (01) ◽  
pp. 13-20 ◽  
Author(s):  
Teng-Le Huang ◽  
Horng-Chaung Hsu ◽  
Chun-Hsu Yao ◽  
Yueh-Sheng Chen ◽  
Jeff Wang

Although hyaluronans (HA) has been proved to be effective in the treatment of patients with osteoarthritis and rheumatoid arthritis, the correlations between these effects and the molecular weight (MW) of HA have not been systematically followed. Many different HA preparations are now applied worldwide in clinical usage. Their MWs are very wide ranged (500–6,000 kDa). No systematic review especially addresses the role of HA's MW in the effects of anti-inflammation and structure protection. This study evaluates the literature of the basic and clinical studies on biological, pathological, and clinical effects of different MW HA. Databases were searched through PubMed (period 1978–2009), using the terms hyaluronan, hyaluronic acid, arthritis, and MW. Reference lists of relevant articles were controlled for additional references. We define the "high" MW (HMW) as MW greater than 2,000 kDa and define the "low" MW (LMW) as MW less than 2,000 kDa in the current study. Most data that support the structure protective effect of HA are from the studies with LMW HA. On the other hand, the majority of data that recommend the anti-inflammatory effect of HA are from the reports of HMW HA. In conclusion, we suggest that the effects of LMW HA were more structure protective and those of HMW HA were more anti-inflammatory.


Sign in / Sign up

Export Citation Format

Share Document