scholarly journals Enhanced Antibacterial Activity of Meropenem against Extensively Drug-Resistant Acinetobacter baumannii by Myrtaceae Plant Extracts

2020 ◽  
Vol 17 (11) ◽  
pp. 1168-1176
Author(s):  
Dennapa SAELOH ◽  
Monton VISUTTHI ◽  
Marisa LEEHA ◽  
Surasak LIMSUWAN ◽  
Supayang Piyawan VORAVUTHIKUNCHAI

Acinetobacter baumannii (A. baumannii) has been known as a major cause of nosocomial bacterial infections worldwide. The bacteria are increasingly associated with a broad spectrum of antibiotic resistance, and this has become a widespread concern in a variety of hospitals.Antibiotic development and alternative treatment have become priorities for the treatment of bacterial infections.This study investigated the efficacy of meropenem in combination with five ethanolic extracts of plants in Myrtaceae against extensively drug-resistant (XDR) A. baumannii. The resistant phenotype was previously determined by microdilution method. XDR-A. baumannii strains showed resistance to meropenem with the minimum inhibitory concentration (MIC) in a range of 16 - 128 µg/mL, whereas the MIC value of all extracts, including Calistemon lancealatus, Eucalyptus citridora, Rhodomytus tomentasa, Syzygium cumini, and Xanthortemon chrysanthus, was over 1,000 µg/mL. Interestingly, all extracts potentiated the activity of the antibiotic by reducing the MIC values of the antibiotic. Xanthortemon chrysanthus extract displayed excellent synergism against the bacteria by decreasing the MIC value of the drug greater than 8-fold. In addition, the extract, at concentrations of 31.25, 62.5, 125, 250, 500, and 1,000 µg/mL, obviously increased the inhibitory effect of meropenem (1/4´MIC) against A. baumannii. The percentage of bacterial growth inhibition by combination was 87.9, 88.8, 91.8, 93.6, 99.9, and 100, respectively. The results supported that the extract could improve the activity of ineffective antibiotics against drug-resistant pathogens.Therefore, the findings may serve as therapeutic options for XDR-A. baumannii infections in the future.

Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 178 ◽  
Author(s):  
Karyne Rangel ◽  
Guilherme Curty Lechuga ◽  
André Luis Almeida Souza ◽  
João Pedro Rangel da Silva Carvalho ◽  
Maria Helena Simões Villas Bôas ◽  
...  

Acinetobacter baumannii is a prevalent pathogen in hospital settings with increasing importance in infections associated with biofilm production. Due to a rapid increase in its drug resistance and the failure of commonly available antibiotics to treat A. baumannii infections, this bacterium has become a critical public health issue. For these multi-drug resistant A. baumannii, polymyxin antibiotics are considered the only option for the treatment of severe infections. Concerning, several polymyxin-resistant A. baumannii strains have been isolated over the last few years. This study utilized pan drug-resistant (PDR) strains of A. baumannii isolated in Brazil, along with susceptible (S) and extreme drug-resistant (XDR) strains in order to evaluate the in vitro activity of melittin, an antimicrobial peptide, in comparison to polymyxin and another antibiotic, imipenem. From a broth microdilution method, the determined minimum inhibitory concentration showed that S and XDR strains were susceptible to melittin. In contrast, PDR A. baumannii was resistant to all treatments. Treatment with the peptide was also observed to inhibit biofilm formation of a susceptible strain and appeared to cause permanent membrane damage. A subpopulation of PDR showed membrane damage, however, it was not sufficient to stop bacterial growth, suggesting that alterations involved with antibiotic resistance could also influence melittin resistance. Presumably, mutations in the PDR that have arisen to confer resistance to widely used therapeutics also confer resistance to melittin. Our results demonstrate the potential of melittin to be used in the control of bacterial infections and suggest that antimicrobial peptides can serve as the basis for the development of new treatments.


Author(s):  
Elham Abbasi ◽  
Hossein Goudarzi ◽  
Ali Hashemi ◽  
Alireza Salimi Chirani ◽  
Abdollah Ardebili ◽  
...  

AbstractA major challenge in the treatment of infections has been the rise of extensively drug resistance (XDR) and multidrug resistance (MDR) in Acinetobacter baumannii. The goals of this study were to determine the pattern of antimicrobial susceptibility, blaOXA and carO genes among burn-isolated A. baumannii strains. In this study, 100 A. baumannii strains were isolated from burn patients and their susceptibilities to different antibiotics were determined using disc diffusion testing and broth microdilution. Presence of carO gene and OXA-type carbapenemase genes was tested by PCR and sequencing. SDS-PAGE was done to survey CarO porin and the expression level of carO gene was evaluated by Real-Time PCR. A high rate of resistance to meropenem (98%), imipenem (98%) and doripenem (98%) was detected. All tested A. baumannii strains were susceptible to colistin. The results indicated that 84.9% were XDR and 97.9% of strains were MDR. In addition, all strains bore blaOXA-51 like and blaOXA-23 like and carO genes. Nonetheless, blaOXA-58 like and blaOXA-24 like genes were harbored by 0 percent and 76 percent of strains, respectively. The relative expression levels of the carO gene ranged from 0.06 to 35.01 fold lower than that of carbapenem-susceptible A. baumannii ATCC19606 and SDS – PAGE analysis of the outer membrane protein showed that all 100 isolates produced CarO. The results of current study revealed prevalence of blaOXA genes and changes in carO gene expression in carbapenem resistant A.baumannii.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S794-S795
Author(s):  
Mary Francine P Chua ◽  
Syeda Sara Nida ◽  
Jerry Lawhorn ◽  
Janak Koirala

Abstract Background Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) have limited therapeutic options for treatment. Ceftolozane/tazobactam is a newer anti-pseudomonal drug effective against resistant PA infections, however resistance against this drug has now also developed and is increasing. In this study, we explored the combination of ceftolozane/tazobactam (CT) and meropenem (MP) as a possible effective regimen against MDR and XDR PA. Methods We obtained 33 non-duplicate isolates of MDR and XDR PA grown from blood, urine and respiratory samples collected from patients admitted between 2015 and 2019 at our two affiliate teaching hospitals. MDR PA was defined as resistance to 3 or more classes of anti-pseudomonal antibiotics, and XDR PA as resistance to all but two or less classes of anti-pseudomonal antibiotics. Antimicrobial preparations of both MP and CT were made according to manufacturer instructions. Susceptibility testing was performed using the checkerboard method in accordance to CLSI guidelines (CLSI M100, 2017). The ATCC 27853 strain of PA used as control. Synergy, additive effect, indifference and antagonism were defined as FIC (fractional inhibitory concentration) indices of ≤0.5, >0.5 to <1, >1 to <4, and >4, respectively. Results Thirteen (39%) of 33 PA isolates were classified as XDR, while 20 (61%) PA isolates were MDR. All isolates were resistant to MP (MIC50 >32 ug/mL), while only 2 (6%) isolates were susceptible to CT (MIC50 64 ug/mL). A synergistic effect was seen in 9 (27.3%) of PA isolates (FIC index range 0.28 to 0.5)— 2 of which were XDR PA, and 7 were MDR PA. An additive effect was seen in 12 (36.4%), with indifference seen in 12 (36.4%) of isolates. In this study, no antagonism was seen when CT and MP were combined. Conclusion When used in combination, CT and MP can exert a synergistic effect against MDR and XDR PA. Additive effect and indifference can also be seen when both antibiotics were used. Moreover, there was no antagonism seen when both antibiotics were combined. This study shows that the use of CT and MP in combination may be an option against XDR and MDR PA infections. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amit Gaurav ◽  
Varsha Gupta ◽  
Sandeep K. Shrivastava ◽  
Ranjana Pathania

AbstractThe increasing prevalence of antimicrobial resistance has become a global health problem. Acinetobacter baumannii is an important nosocomial pathogen due to its capacity to persist in the hospital environment. It has a high mortality rate and few treatment options. Antibiotic combinations can help to fight multi-drug resistant (MDR) bacterial infections, but they are rarely used in the clinics and mostly unexplored. The interaction between bacteriostatic and bactericidal antibiotics are mostly reported as antagonism based on the results obtained in the susceptible model laboratory strain Escherichia coli. However, in the present study, we report a synergistic interaction between nalidixic acid and tetracycline against clinical multi-drug resistant A. baumannii and E. coli. Here we provide mechanistic insight into this dichotomy. The synergistic combination was studied by checkerboard assay and time-kill curve analysis. We also elucidate the mechanism behind this synergy using several techniques such as fluorescence spectroscopy, flow cytometry, fluorescence microscopy, morphometric analysis, and real-time polymerase chain reaction. Nalidixic acid and tetracycline combination displayed synergy against most of the MDR clinical isolates of A. baumannii and E. coli but not against susceptible isolates. Finally, we demonstrate that this combination is also effective in vivo in an A. baumannii/Caenorhabditis elegans infection model (p < 0.001)


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Peechanika Chopjitt ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Parichart Boueroy ◽  
Rujirat Hatrongjit ◽  
...  

ABSTRACT Here, we report the complete genome sequences of four clinical isolates of extensively drug-resistant Acinetobacter baumannii (XDRAB), isolated in Thailand. These results revealed multiple antimicrobial-resistant genes, each involving two sequence type 16 (ST16) isolates, ST2, and a novel sequence type isolate, ST1479.


Author(s):  
Noor Zaidan ◽  
J. Patrik Hornak ◽  
David Reynoso

Extremely drug resistant (XDR) Acinetobacter baumannii cause challenging nosocomial infections. We report the case of a patient with XDR A. baumannii pneumonia and septic shock successfully treated with cefiderocol and a novel antibiotic obtained via expanded access protocol. With focused research and drug development efforts, the poor outcomes associated with these infections may be mitigated.


2017 ◽  
Vol 02 (01) ◽  
Author(s):  
Islas Munoz Beda Daniela ◽  
Villegas Acosta Liudmila ◽  
Aguilar Zapata Daniel ◽  
Valdez Vazquez Rafael ◽  
Lopez Escamilla Eduardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document