scholarly journals Effect of Maximum Aggregate Size on the Bond Strength of Reinforcements in Concrete

2018 ◽  
Vol 8 (3) ◽  
pp. 2892-2896
Author(s):  
S. Iqbal ◽  
N. Ullah ◽  
A. Ali

The bond between reinforcements and concrete is the only mechanism that transfers the tensile stresses from concrete to reinforcements. Several factors including chemical adhesion, roughness and reinforcement interface and bar bearing affect the bond strength of reinforcements with concrete. This work was carried out considering another varying factor which is maximum aggregate size. Four mixes of concrete with similar compressive strengths but different maximum aggregate sizes of 25.4mm, 19.05mm, 12.7mm and 9.53mm were used with the same bar size of 16mm. Compressive strength, splitting tensile strength and bond strength for each concrete mix were studied. Test results depict a slight increase in compressive and splitting tensile strength with decrease in maximum aggregate size. The bond strength remained at the same level with decrease in maximum aggregate size except at maximum aggregate size of 9.53mm when there was a drop in bond strength, despite better compressive and splitting tensile strengths. ACI-318 and FIB-2010 codes equation for bond strength calculation work well only when the maximum aggregate size is 12.7mm and above. Therefore, maximum aggregate size is critical for bond strength when smaller size aggregates are used.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


Author(s):  
Adda Hadj Mostefa ◽  
Merdaci Slimane

This work is carried out to investigate the performance of concrete reinforced with plastic fibers obtained locally (bottle waste as fiber). Bottle waste plastic was chosen because it is being thrown after single use and cause environmental problem. One way to recycle wasted bottles plastic is grinded into irregular fiber. Then, it was incorporate with the concrete and tests the performance of the concrete. The study was conducted using cylindrical and rectangular (cube) mold of concrete to investigate the performance of the concrete in term of mechanical properties. In this research, the mechanical properties that were measured are compressive strength, splitting tensile strength and flexural strength. The results revealed that the presence of plastic fiber in concrete will increase the concrete performance, as well as the concrete bond strength is improved and the cracks in the concrete decrease the use of fibers and reduce plastic waste.


1994 ◽  
Vol 370 ◽  
Author(s):  
Manouchehr Hassanzadeh

AbstractThis study has determined the fracture mechanical properties of 9 types of rock, namely fine-, medium- and coarse-grained granites, gneiss, quartzite, diabase, gabbro, and fine- and coarse-grained limestones. Test results show among other things that quartzite has the highest compressive strength and fracture energy, while diabase has the highest splitting tensile strength and modulus of elasticity. Furthermore, the strength and fracture energy of the interfacial zone between the rocks and 6 different mortars have been determined. The results showed that, in this investigation, the mortar/rock interfaces are in most cases weaker than both mortars and rocks.


2021 ◽  
Vol 14 (1) ◽  
pp. 437
Author(s):  
Wajeeha Mahmood ◽  
Asad-ur-Rehman Khan ◽  
Tehmina Ayub

This research aims to examine the effect of carbonation on the strength properties and carbonation depth of ordinary Portland cement (OPC) concrete using two different water to cement ratios (w/c) and two different replacement percentages of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA). Two concrete mixes were prepared using w/c of 0.4 and 0.43. The two concrete mixes were subdivided into two subgroups based on the use of NCA and 30% RCA. The first concrete mix having w/c of 0.4 was contained NCA and from this concrete, 42 cylinders of 100 mm dia. and 200 mm height were cast. Six out of 42 cylinders served as control specimens and were not exposed to CO2. A total of 18 out of the remaining 36 cylinders was exposed to the simulated environment and the rest were exposed to the natural environment. The second concrete mix having a w/c of 0.4 contained 30% RCA/70% NCA, and using this concrete, 42 cylinders of similar size were cast. A similar scheme was adopted for w/c of 0.43 and, in total, 84 cylinders using four mix designs were cast. After casting and 28 days of curing, six out of 42 cylinders cast from each concrete mix design were tested for compression and splitting tensile strength, following ASTM C39 and ASTM C496 without any exposure to carbon dioxide (CO2). A total of 18 out of the remaining 36 cylinders was exposed to the simulated environment in a carbonation chamber for an equivalent time duration of 90, 180 and 365 days following CEN test guidelines and the other 18 cylinders were kept in the natural environment for a period of 90, 180 and 365 days. After the completion of simulated and natural exposure periods, these cylinders were distributed equally to test for compressive strength and splitting tensile strength to observe the effect of carbon dioxide (CO2) at each time duration (i.e., 90, 180 and 365 days), and replacement percentage of RCA (i.e., 0 and 30%), which showed that carbonation depth increases incrementally with the w/c ratio and CO2 exposure duration. In both the simulated and the natural environment, the use of RCA in concrete cast using a w/c of 0.4 increased carbonation depth up to 38% and 46%, whereas, in the case of the concrete cast using a w/c ratio of 0.43, the use of RCA increased the carbonation depth up to 16% and 25%. In general, the use of RCA in the concrete exposed to the natural environment significantly affected the compressive strength of concrete, due to multiple interfaces and the porous structure of RCA, and the variation in the temperature, humidity and content of carbon dioxide (CO2) present in the actual environment. The maximum compressive strength variation prepared from the mixes M0-0.4, M30-0.43, M0-0.43 and M30-0.43 differed by 5.88%, 7.69%, 16.67% and 20% for an exposure period up to 365 days. Similarly, the results of splitting tensile strength tests on cylinders prepared from the same mixes exposed to the natural environment differ by 7.4%, 27.6%, 25.41% and 18.2% up to 365 days of exposure, respectively, as compared to the simulated environment.


2018 ◽  
Vol 162 ◽  
pp. 02012 ◽  
Author(s):  
Waleed Abbas ◽  
Eethar Dawood ◽  
Yahya Mohammad

The properties of foamed concrete reinforced with carbon fibres and hybrid fibres of carbon with polypropylene fibres has been studied. Various volumetric fractions of carbon fibres (0.5, 1 and 1.5%), hybrid fibres of carbon fibres (CF) with polypropylene fibres (PPF) as (1% CF + 0.5% PPF) & (0.5% CF + 1% PPF), also the mono polypropylene fibres as 1.5% PPF were used to reinforce foamed concrete mix. Fresh and hardened properties of all mixes included flowability, density, absorption, compressive strength, splitting tensile strength, and flexural strengths has been tested. Results showed that inclusion of carbon fibres up to 1% volumetric fraction may increase the compressive strength by about 36% higher than that of control mix. Whereas, the use of 1.5% carbon fibres exhibit significant increase in splitting and flexural tensile strengths by about 47 and 114%, respectively, compared to the reference mix. On the other hand, the hybridization of 1% CF + 0.5% PPF increased the splitting tensile strength and flexural strengths by 53% and 114%, respectively, compared with plain foamed concrete mix.


2013 ◽  
Vol 701 ◽  
pp. 12-16 ◽  
Author(s):  
Mohd Irwan Juki ◽  
Khairunnisa Muhamad ◽  
Mahamad Mohd Khairil Annas ◽  
Koh Heng Boon ◽  
Norzila Othman ◽  
...  

This paper describes the experimental investigation to develop the concrete mix design Nomograph for concrete containing PET as fine aggregate. The physical and mechanical properties were determined by using mix proportion containing 25%, 50% and 75% of PET with water cement ratio (w/c) 0.45, 0.55 and 0.65. The data obtained showed that the inclusion of PET aggregate reduce the strength performances of concrete. All the data obtained were combined into one single graph to develop a preliminary mix design nomograph for PET concrete. The nomograph consist of ; relationship between compressive strength and water cement ratio; relationship between splitting tensile strength water cement ratio; relationship between splitting tensile strength and PET percentage and relationship between compressive strength and PET percentage. The mix design nomograph can be used to assists in selecting the proper mix proportion parameters based on the criteria required.


2011 ◽  
Vol 306-307 ◽  
pp. 1029-1037 ◽  
Author(s):  
Dan Ying Gao ◽  
Shuai Qi Song ◽  
Liang Ming Hu

This article carried out the strength experiments on four hundred and five specimens with twelve mix proportions and three curing ages, systematically investigated the relationships of related strengths, the dimensional effect of compressive strength and splitting tensile strength of plastic concrete. The results showed that there well exist the statistical relationships among the related strengths of plastic concrete, the dimensional effect coefficients of compressive strength and splitting tensile strength with 100mm cubic specimen are 0.9375 and 0.8616 respectively compared with 150mm cubic specimen. Based on the analysis of test results, the conversion formulae of strength-related indicators and linear function relationship between axial compressive strength and curing ages are put forward respectively.


2018 ◽  
Vol 4 (4) ◽  
pp. 88
Author(s):  
Reza Fauzi Nirwan ◽  
Priyanto Saelan

ABSTRAKPenelitian ini dilakukan untuk mengetahui hasil perancangan campuran beton abu terbang yang mensubtitusi semen dengan cara pendekatan sand blended, yaitu abu terbang yang mensubtitusi semen diperlakukan sebagai agregat halus, sehingga agregat halus merupakan campuran dari pasir dan abu terbang. Penelitian dilakukan dengan kuat tekan rencana 20 MPa dan 30 MPa. Substitusi semen oleh abu terbang sebesar  10 %, 20 %, dan 30 % dari berat semen. Ukuran maksimum agregat kasar yang digunakan adalah 20 mm, dan pasir dengan modulus kehalusan 2,768, slump rencana 6 cm dan 10 cm. Hasil pengujian tekan silinder beton berdiameter 10 cm dan tinggi 20 cm menunjukkan bahwa kuat tekan beton abu terbang yang dihasilkan berdekatan dengan beton acuan yaitu beton tanpa abu terbang, untuk semua kadar abu terbang yaitu sampai dengan kadar subtitusi semen oleh abu terbang sebesar 30 %. Pendekatan sand blended dapat dilakukan dalam perancangan campuran beton abu terbang.Kata Kunci : beton abu terbang, kuat tekan, pasir blendedABSTRACTThis is research was performed to know the result of the test of fly ash concrete mix designed by sand blended method. Fly ash will be treated as fine aggregate so that the total fine aggregate is the consist of fly ash and sand. 20 MPa and 30 MPa concrete mix are designed for 10 %, 20 % and 30 % by weight of cement subtitution by fly ash. Concrete mix use 20 mm maximum aggregate size, finess modulus of sand 2.768, and 6 cm and  10 cm slump. Compressive strength tests of 10 cm diameter and 20 cm height cylinder showed that the stength of fly ash concrete is the same as the strength of initial concrete. Fly ash concrete mix can be designed by sand blended approximation.Keywords : fly ash concrete, compressive strength, blended sand


Sign in / Sign up

Export Citation Format

Share Document