scholarly journals On the motion of a triple pendulum system under the influence of excitation force and torque

2021 ◽  
Vol 48 (4) ◽  
Author(s):  
T. S. Amer ◽  
◽  
A. A. Galal ◽  
A. F. Abolila ◽  
◽  
...  

In this article, a nonlinear dynamical system with three degrees of freedom (DOF) consisting of multiple pendulums (MP) is investigated. The motion of this system is restricted to be in a vertical plane, in which its pivot point moves in a circular path with constant angular velocity, under the action of an external harmonic force and a moment acting perpendicular to the direction of the last arm of MP and at the suspension point respectively. Multiple scales technique (MST) among other perturbation methods is used to obtain the approximate solutions of the equations of motion up to the third approximation because it is authorizing to execute a specific analysis of the system behaviour and to realize the solvability conditions given the resonance cases. The stability of the considered dynamical model utilizing the nonlinear stability analysis approach is examined. The solutions diagrams and resonance curves are drawn to illustrate the extent of the effect of various parameters on the solutions. The importance of this work is due to its uses in human or robotic walking analysis.

2021 ◽  
Vol 11 (23) ◽  
pp. 11567
Author(s):  
Wael S. Amer ◽  
Tarek S. Amer ◽  
Roman Starosta ◽  
Mohamed A. Bek

The major objective of this research is to study the planar dynamical motion of 2DOF of an auto-parametric pendulum attached with a damped system. Using Lagrange’s equations in terms of generalized coordinates, the fundamental equations of motion (EOM) are derived. The method of multiple scales (MMS) is applied to obtain the approximate solutions of these equations up to the second order of approximation. Resonance cases are classified, in which the primary external and internal resonance are investigated simultaneously to establish both the solvability conditions and the modulation equations. In the context of the stability conditions of these solutions, the equilibrium points are obtained and graphically displayed to derive the probable steady-state solutions near the resonances. The temporal histories of the attained results, the amplitude, and the phases of the dynamical system are depicted in graphs to describe the motion of the system at any instance. The stability and instability zones of the system are explored, and it is discovered that the system’s performance is stable for a significant number of its variables.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
T. S. Amer

In this paper, we will focus on the dynamical behavior of a rigid body suspended on an elastic spring as a pendulum model with three degrees of freedom. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity. The relative periodic motions of this model are considered. The governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates. The numerical solutions are investigated using the fourth-order Runge-Kutta algorithms through Matlab packages. These solutions are represented graphically in order to describe and discuss the behavior of the body at any instant for different values of the physical parameters of the body. The obtained results have been discussed and compared with some previous published works. Some concluding remarks have been presented at the end of this work. The importance of this work is due to its numerous applications in life such as the vibrations that occur in buildings and structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. I. Ismail

AbstractIn this paper, a pendulum model is represented by a mechanical system that consists of a simple pendulum suspended on a spring, which is permitted oscillations in a plane. The point of suspension moves in a circular path of the radius (a) which is sufficiently large. There are two degrees of freedom for describing the motion named; the angular displacement of the pendulum and the extension of the spring. The equations of motion in terms of the generalized coordinates $$\varphi$$ φ and $$\xi$$ ξ are obtained using Lagrange’s equation. The approximated solutions of these equations are achieved up to the third order of approximation in terms of a large parameter $$\varepsilon$$ ε will be defined instead of a small one in previous studies. The influences of parameters of the system on the motion are obtained using a computerized program. The computerized studies obtained show the accuracy of the used methods through graphical representations.


2021 ◽  
Vol 11 (18) ◽  
pp. 8658
Author(s):  
Mohamed K. Abohamer ◽  
Jan Awrejcewicz ◽  
Roman Starosta ◽  
Tarek S. Amer ◽  
Mohamed A. Bek

Energy harvesting is becoming more and more essential in the mechanical vibration application of many devices. Appropriate devices can convert the vibrations into electrical energy, which can be used as a power supply instead of ordinary ones. This study investigated a dynamical system that correlates with two devices, namely a piezoelectric device and an electromagnetic one, to produce two novel models. These devices are connected to a nonlinear damping spring pendulum with two degrees of freedom. The damping spring pendulum is supported by a point moving in a circular orbit. Lagrange’s equations of the second kind were utilized to obtain the equations of motion. The asymptotic solutions of these equations were acquired up to the third approximation using the approach of multiple scales. The comparison between the approximate and the numerical solutions reveals high consistency between them. The steady-state solutions were investigated, and their stabilities were checked. The influences of excitation amplitudes, damping coefficients, and the different frequencies on energy-harvesting device outputs are examined and discussed. Finally, the nonlinear stability analysis of the modulation equations is discussed through the stability and instability ranges of the frequency response curves. The work is significant due to its real-life applications, such as a power supply of sensors, charging electronic devices, and medical applications.


2021 ◽  
Vol 11 (20) ◽  
pp. 9520
Author(s):  
Tarek S. Amer ◽  
Roman Starosta ◽  
Adelkarim S. Elameer ◽  
Mohamed A. Bek

This work looks at the nonlinear dynamical motion of an unstretched two degrees of freedom double pendulum in which its pivot point follows an elliptic route with steady angular velocity. These pendulums have different lengths and are attached with different masses. Lagrange’s equations are employed to derive the governing kinematic system of motion. The multiple scales technique is utilized to find the desired approximate solutions up to the third order of approximation. Resonance cases have been classified, and modulation equations are formulated. Solvability requirements for the steady-state solutions are specified. The obtained solutions and resonance curves are represented graphically. The nonlinear stability approach is used to check the impact of the various parameters on the dynamical motion. The comparison between the attained analytic solutions and the numerical ones reveals a high degree of consistency between them and reflects an excellent accuracy of the used approach. The importance of the mentioned model points to its applications in a wide range of fields such as ships motion, swaying buildings, transportation devices and rotor dynamics.


Volume 2 ◽  
2004 ◽  
Author(s):  
Mohammad Shoeybi ◽  
Mehrdaad Ghorashi

An investigation on the nonlinear vibrations of a system with two degrees of freedom when subjected to saturation is presented. The method is especially applied to a system that consists of a DC motor with a nonlinear controller and subjected to a harmonic forcing voltage. Approximate solutions are sought using the method of multiple scales. Also, singular point analysis is used to study stability of solutions. These findings are then compared with the corresponding numerical results. Good agreement between the two is observed.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
A. I. Ismail

In this paper, we consider the dynamical description of a pendulum model consists of a heavy solid connection to a nonelastic string which suspended on an elliptic path in a vertical plane. We suppose that the dimensions of the solid are large enough to the length of the suspended string, in contrast to previous works which considered that the dimensions of the body are sufficiently small to the length of the string. According to this new assumption, we define a large parameter ε and apply Lagrange’s equation to construct the equations of motion for this case in terms of this large parameter. These equations give a quasi-linear system of second order with two degrees of freedom. The obtained system will be solved in terms of the generalized coordinates θ and φ using the large parameter procedure. This procedure has an advantage over the other methods because it solves the problem in a new domain when fails all other methods for solving the problem in such a domain under these conditions. It is one of the most important applications, when we study the slow spin motion of a rigid body in a Newtonian field of force under an external moment or the rotational motion of a heavy solid in a uniform gravity field or the gyroscopic motions with a sufficiently small angular velocity component about the major or the minor axis of the ellipsoid of inertia. There are many applications of this technique in aerospace science, satellites, navigations, antennas, and solar collectors. This technique is also useful in all perturbed problems in physics and mechanics, for example, the perturbed pendulum motions and the perturbed mechanical systems. The results of this paper also are useful in moving bridges and the swings. For satisfying the validation of the obtained solutions, we consider numerical considerations by one of the numerical methods and compare the obtained analytical and numerical solutions.


Author(s):  
Matthew P Cartmell ◽  
Ivana Kovacic ◽  
Miodrag Zukovic

This article investigates a four-degree-of-freedom mechanical model comprising a horizontal bar onto which two identical pendula are fitted. The bar is suspended from a pair of springs and the left-hand-side pendulum is excited by means of a harmonic torque. The article shows that autoparametric interaction is possible by means of typical external and internal resonance conditions involving the system natural frequencies and excitation frequency, yielding an interesting case when the right-hand-side pendulum does not oscillate, but stays at rest. It is demonstrated that applying the standard method of multiple scales to this system leads to slow-time and subsequently steady-state equations representative of periodic responses; however, in common with previous findings reported in the literature for systems of four or more interacting modes, global solutions are not obtainable. This article then concentrates on discussing a proposed new modification to the method of multiple scales in which the effect of detuning is accentuated within the zeroth-order perturbation equations and it is then demonstrated that the numerical solutions from this approach to multiple scales yield results that are virtually indistinguishable from those obtained from direct numerical integration of the equations of motion. It is also shown that the algebraic structure of the steady-state solutions for the modified multiple scales analysis is identical to that obtained from a harmonic balance analysis for the case when the right-hand-side pendulum is decoupled. This particular decoupling case is prominent from examination of both the original equations of motion and the steady-state solutions irrespective of the analysis undertaken. This article concludes by showing that the translation and rotation of the bar are, in this particular case, mutually coupled and opposite in sign.


2009 ◽  
Vol 19 (01) ◽  
pp. 225-243 ◽  
Author(s):  
D. X. CAO ◽  
W. ZHANG

The nonlinear dynamic responses of a string-beam coupled system subjected to harmonic external and parametric excitations are studied in this work in the case of 1:2 internal resonance between the modes of the beam and string. First, the nonlinear governing equations of motion for the string-beam coupled system are established. Then, the Galerkin's method is used to simplify the nonlinear governing equations to a set of ordinary differential equations with four-degrees-of-freedom. Utilizing the method of multiple scales, the eight-dimensional averaged equation is obtained. The case of 1:2 internal resonance between the modes of the beam and string — principal parametric resonance-1/2 subharmonic resonance for the beam and primary resonance for the string — is considered. Finally, nonlinear dynamic characteristics of the string-beam coupled system are studied through a numerical method based on the averaged equation. The phase portrait, Poincare map and power spectrum are plotted to demonstrate that the periodic and chaotic motions exist in the string-beam coupled system under certain conditions.


Author(s):  
Rodrigo T Rocha ◽  
Angelo M Tusset ◽  
Mauricio A Ribeiro ◽  
Wagner B Lenz ◽  
Jose M Balthazar

In this paper, a piezoelectric energy harvesting application on a portal frame of two-degrees-of-freedom considering a quadratic coupling between the coordinates with two-to-one internal resonance is considered. The piezoelectric material is considered as a linear device using a voltage and a charge mathematical model. The equations of motion of the system were obtained by applying the energy method of Lagrange, and the method of multiple scales is applied to find an analytical approximated solution of the equations of motion. Numerical results showed that the voltage model and a charge model have good agreement in relation to the behavior and amplitudes of displacement of the system.


Sign in / Sign up

Export Citation Format

Share Document