scholarly journals Root length density (RLD) of oil palm (Elaeis guineensis Jacq) in a haplic Luvisol in Chiapas, Mexico

2021 ◽  
Vol 53 (2) ◽  
pp. 157-164
Author(s):  
José Jesús Obrador-Olán ◽  
Mepivoseth Castelán-Estrada ◽  
Alberto Córdova Sánchez ◽  
Sergio Salgado-García ◽  
Eustolia García-López ◽  
...  

The tight relationship between root architecture and uptake capacity of soil water and minerals, is well established. Support roots, generally long-lived, perform support functions such as transportation and food storage. Absorbing roots, thin and short-lived, absorb nutrients and regulate plant metabolism. Roots distribution in the soil profile is crucial for plant development. It optimizes resource usage and ensures a prompt response to seasonal changes. This work aimed to study the vertical distribution of the root system of nine-year-old oil palms in a haplic Luvisol, low fertility, moderately acidic, with Nitrogen (N) and Potassium (K) deficiency, average content of Phosphorous (P), and medium to low Cation Exchange Capacity (CEC). Using the cylinder method, soil samples were collected every 10 cm and down to 150 cm of soil depth, from each cardinal side of three soil profiles. The results showed that oil palms had good root development. Most roots (73%) were found in the first 30 cm of soil, with a predominance of fine roots (78%). At 50 cm in depth, fine roots represented 88%, thin roots, 67% and medium roots, 94%. Further study should assess root length density at 15, 20, 25, and 30 years. Highlights - Haplic luvisols are optimal soils for oil palm cultivation due to their depth (> 150cm), over 50% base saturation, and pH of 5.5-6.6. - Root length density (RLD) decreased as soil depth increased. Although most oil palm roots are found in surface horizons, roots can still be found at depths of up to 1.5-5 m. - The highest number of oil palm roots (73%) was found in the first 30 cm, with 78% of fine roots. - Fine roots were distributed throughout the entire soil profile, evidencing  high nutrient-absorption and metabolic activities.

HortScience ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 503-512 ◽  
Author(s):  
Haishan An ◽  
Feixiong Luo ◽  
Ting Wu ◽  
Yi Wang ◽  
Xuefeng Xu ◽  
...  

Fine root (≤2 mm in diameter) systems play a pivotal role in water and mineral uptake in higher plants. However, the impact of fine root architecture on tree growth and development is not fully understood, especially in apple trees. Here, we summarize a 6-year-trial study using minirhizotrons to investigate the relationships between fine root production, mortality, and longevity in ‘Red Fuji’ trees grafted on five different rootstocks/interstems. Based on root length density (RLD), fine root production and mortality were markedly lower in ‘Red Fuji’ trees growing on dwarfing M.9 (M.9) and Shao series no. 40 (SH.40) rootstocks than in trees on standard Malus robusta ‘Baleng Crab’ (BC) rootstock. The use of M.9 and SH.40 as interstems led to an extensive reduction in fine root production and mortality in comparison with BC rootstock. Root number density (RND), but not average root length (ARL), showed similar patterns to RLD. About one-half of fine roots in ‘Red Fuji’ tree growing on M.9 were scattered within the top 0–20 cm of topsoil, indicating shallow root system in M.9, whereas in trees on BC, 55.15% of fine roots were distributed between 100- and 150-cm soil depth, indicating a deep root architecture. The addition of interstems did not alter fine root soil-depth distribution. For all rootstocks/interstems, fine roots with a life span of less than 80 days were generated in spring and summer, but fine roots which lived for more than 81 days were produced almost all the year round. In conclusion, lower fine root numbers were associated with the dwarfing effect in dwarfing rootstocks/interstems, but ARL and shallower rooting were not.


2020 ◽  
Author(s):  
Jhonathan Ephrath ◽  
Alon Ben-Gal ◽  
Amnon Bustan ◽  
Lina Zhao

<p>Salinity affects plant growth due to both osmotic and ionic stress. The root system is essential in defense mechanisms against salinity, particularly involving salt ion avoidance or exclusion. Jojoba (<em>Simmondsia chinensis</em>) displays significant resistance to salinity. In the present study, Jojoba was planted in 60-L plastic buckets containing perlite growth medium and were provided with eight distinct salinity levels using two operating tanks of final irrigation solutions. Response of Jojoba to salinity was measured in above ground parameters and in roots using minirhizotron access tubes and imaging analysis. Leaf phosphorous and potassium concentrations decreased with increasing salinity level while leaf manganese, calcium, sodium and chloride concentrations increased with irrigation salinity level. Jojoba plants were found to have high level of storage of salt minerals in leaves but without effects on photosynthesis or transpiration. Roots exhibited different distribution patterns under different salinity treatments. Root length density increased with increased salinity at each depth. Root number and root length increased over time. During spring, the plant growth was faster than winter. Root diameter decreased over time due to new root development. Time had a more significant effect on root length density than irrigation water salinity or soil depth. Root number and root length were not significantly affected by the salt treatments.</p>


2009 ◽  
Vol 60 (3) ◽  
pp. 280 ◽  
Author(s):  
Peter S. Searles ◽  
Diego A. Saravia ◽  
M. Cecilia Rousseaux

Several studies have evaluated many above-ground aspects of olive production, but essential root system characteristics have been little examined. The objective of our study was to evaluate root length density (RLD) and root distribution relative to soil water content in three commercial orchards (north-west Argentina). Depending on the orchard, the different drip emitter arrangements included either: (1) emitters spaced continuously at 1-m intervals along the drip line (CE-4; 4 emitters per tree); (2) 4 emitters per tree spaced at 1-m intervals, but with a space of 2 m between emitters of neighbouring trees (E-4); or (3) 2 emitters per tree with 4 m between emitters of neighbouring trees (E-2). All of the orchards included either var. Manzanilla fina or Manzanilla reina trees (5–8 years old) growing in sandy soils, although the specific characteristics of each orchard differed. Root length density values (2.5–3.5 cm/cm3) in the upper soil depth (0–0.5 m) were fairly uniform along the drip line in the continuous emitter (CE-4) orchard. In contrast, roots were more concentrated in the E-4 and E-2 orchards, in some cases with maximum RLD values of up to 7 cm/cm3. Approximately 70% of the root system was located in the upper 0.5 m of soil depth, and most of the roots were within 0.5 m of the drip line. For each of the three orchards, significant linear relationships between soil water content and RLD were detected based on 42 sampling positions that included various distances from the trunk and soil depths. Values of RLD averaged over the entire rooting zone and total tree root length per leaf area for the three orchards were estimated to range from 0.19 to 0.48 cm/cm3 and from 1.8 to 3.5 km/m2, respectively. These results should reduce the uncertainty associated with the magnitude of RLD values under drip irrigation as intensively managed olive orchards continue to expand in established and new growing regions.


2018 ◽  
Vol 10 (11) ◽  
pp. 4315 ◽  
Author(s):  
Yunlong Zhang ◽  
Tengteng Li ◽  
Shuikuan Bei ◽  
Junling Zhang ◽  
Xiaolin Li

The replacement of inorganic fertilizer nitrogen by manure is highlighted to have great potential to maintain crop yield while delivering multiple functions, including the improvement of soil quality. However, information on the dynamics of root distributions in response to chemical fertilizers and manure along the soil profile is still lacking. The aim of this study was to investigate the temporal-spatial root distributions of summer maize (Zea mays L.) from 2013 to 2015 under four treatments (unfertilized control (CK), inorganic fertilizer (NPK), manure + 70% NPK (NPKM), and NPKM + straw (NPKMS)). Root efficiency for shoot N accumulation was increased by 89% in the NPKM treatment compared with the NPK treatment at V12 (the emergence of the twelfth leaf) of 2014. Root growth at 40–60 cm was consistently stimulated after manure and/or straw additions, especially at V12 and R3 (the milk stage) across three years. Root length density (RLD) in the diameter <0.2 mm at 0–20 cm was significantly positively correlated with soil water content and negatively with soil mineral N contents in 2015. The RLD in the diameter >0.4 mm at 20–60 cm, and RLD <0.2 mm, was positively correlated with shoot N uptake in 2015. The root length density was insensitive in response to fertilization treatments, but the variations in RLD along the soil profile in response to fertilization implies that there is a great potential to manipulate N supply levels and rooting depths to increase nutrient use efficiency. The importance of incorporating a manure application together with straw to increase soil fertility in the North China Plain (NCP) needs further studies.


2006 ◽  
Vol 57 (10) ◽  
pp. 1097 ◽  
Author(s):  
Mingtan Liao ◽  
Jairo A. Palta ◽  
Ian R. P. Fillery

Root growth is important for the acquisition of nitrogen (N) and water in deep sandy soil profiles with high leaching potential. Root growth characteristics and the N uptake of wheat genotypes differing in early vigour were investigated in 2 glasshouse experiments. In both experiments the vigorous breeding lines Vigor18 and B18 and the well-adapted commercial cultivar Janz were grown in glass-walled growth boxes in a controlled-temperature glasshouse up to the onset of stem elongation. In Expt 1, rooting parameters and detailed measurements of root growth and proliferation were made at 2-day intervals using a root mapping technique. In Expt 2 the glass-walled growth boxes were segmented into upper (0–0.2 m), middle (0.2–0.7 m), and bottom (0.7–1.0 m) soil layers, and the contribution of N fertiliser uptake by roots from each soil layer to the total plant N uptake was determined by applying 15N-urea to a single soil layer each time. The accumulated total root length across the soil profile from the 1-leaf stage to the onset of stem elongation was 33–83% higher in the vigorous lines Vigor18 and B18 than in Janz. The roots of the 3 genotypes grew vertically down the soil profile at a similar rate, but the roots of vigorous lines branched earlier and grew horizontally faster and more extensively than those of cv. Janz, resulting in a greater root-length density and root number in the top 0.7-m soil layer. Uptake of N fertiliser by roots in the upper 0–0.2 m of the soil profile was 60–68% higher in the vigorous lines than in Janz. Roots of the vigorous lines located in the segment 0.2–0.7 m of the soil profile captured twice as much N fertiliser than those of Janz. Uptake of N fertiliser by roots in the lower 0.7–1.0 m of the soil profile was similar in the vigorous lines and Janz. This indicates that the early and more extensive horizontal growth of the roots in the 0.2–0.7 m of the soil profile was responsible for the superior uptake of N by the vigorous lines. The implications of these genotypic differences in root growth and proliferation and their relationship with the early acquisition of N are discussed with emphasis on their role in improving the efficiency of N fertiliser uptake and reducing nitrate leaching, particularly in the sandy soils of the Mediterranean climatic region of Australia.


2012 ◽  
Vol 131 ◽  
pp. 9-16 ◽  
Author(s):  
Yunfeng Peng ◽  
Peng Yu ◽  
Yu Zhang ◽  
Geng Sun ◽  
Peng Ning ◽  
...  

2003 ◽  
Vol 60 (2) ◽  
pp. 377-387 ◽  
Author(s):  
Luis Henrique Bassoi ◽  
Jan W. Hopmans ◽  
Lúcio André de Castro Jorge ◽  
Cristina Miranda de Alencar ◽  
José Antonio Moura e Silva

Grape (Vitis vinifera L.) yield and its quality are dependent of the status of the root system. Root distribution information is also valuable for soil and water management. An analysis of methods to evaluate the root distribution of grapevines for both, drip and microsprinkler irrigation in a Typic Acrustox is presented for the table grape cv. Italia grafted on the rootstock IAC-313, in northeastern Brazil. Measured root parameters using the monolith method were root dry weight (Dw) and root length density (Lv), while root area (Ap) was estimated using the soil profile method in combination with digital image analysis. For both irrigation systems, roots were present to the 1 m soil depth and extended laterally to 1 m distance from the trunk, but grapevines irrigated by microsprinkler showed greater root presence as the distance from the trunk increased. Values of Ap were reasonably well correlated to Dw and Lv. However, correlation values were higher when fractional root distribution was used. The soil profile method in combination with image analysis techniques, allows proper grapevine root distribution evaluation.


HortScience ◽  
2013 ◽  
Vol 48 (8) ◽  
pp. 1021-1026 ◽  
Author(s):  
Gilbert Miller ◽  
Ahmad Khalilian ◽  
Jeffrey W. Adelberg ◽  
Hamid J. Farahani ◽  
Richard L. Hassell ◽  
...  

Delineating the depth and extent of the watermelon [Citrullus lanatus (Thumb.) Matsum. & Nak.] root zone assists with proper irrigation management and minimizes nutrient leaching. The objective of this 3-year field study was to measure root distribution and root length density of watermelon (cv. Wrigley) grafted on two different rootstocks (Lagenaria siceraria cv. ‘FR Strong’ and Cucurbita moschata × Cucurbita maxima cv. Chilsung Shintoza) and grown under three soil moisture treatments. Irrigation treatments tested were: no irrigation (NI), briefly irrigated for fertigation and early-season plant establishment; minimally irrigated (MI), irrigated when soil moisture in top 0.30 m of soil fell below 50% available water capacity (AWC); well irrigated (WI), irrigated when soil moisture in top 0.30 m of soil fell below 15% (AWC). Root length density (RLD) was measured from 75-cm-deep soil cores at two locations three times per growing season and a third location at the end of the season. Cores 1 and 2 sample locations were 15 cm to the side of each plant: Core 1 on the same side as the drip tape and Core 2 on the opposite side. At the end of the season, Core 3 was taken 15 cm outside of the bed in bare ground. RLD was significantly greater in the 0- to 30-cm soil depth and dropped dramatically below 30 cm; it was not significantly affected by irrigation treatment or rootstock. Core 1, next to the drip tape, had greater RLD than Core 2, 30 cm from drip tape, but only at the later sampling dates. Roots were found in Core 3 at all depths, but the RLD was significantly less than that measured in Cores 1 and 2. These findings suggest that the effective root zone depth for watermelon is 0 to 30 cm and that the particular scion/rootstock combinations tested in this study do not differ in root system size or location.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 562 ◽  
Author(s):  
Huijuan Bo ◽  
Chunyan Wen ◽  
Lianjun Song ◽  
Yatao Yue ◽  
Lishui Nie

Stand density directly affects the distribution of ecological factors such as light, heat, and water in forest communities and changes the diversity and structure of undergrowth species, thereby affecting soil health. Fine roots can provide water and nutrients to plants rapidly in the fierce competition of soil resources, so as to get rid of environmental factors. This study examined the fine-root responses of the Populus tomentosa clone S86 to three stand densities (plant × row spacing: 2 × 2 m, 4 × 3 m, 4 × 5 m). We measured the biomass, morphology, and nitrogen content of lower- (1–3 order) and higher-order (>3 order) fine roots, and analyzed soil chemical properties in 10–30 cm. The soil from the density (2 × 2 m) stands showed lower soil organic matter content, available nitrogen, available phosphorous, and available potassium than others. Obviously, lower and higher-order fine roots were different: biomass of the >3 order accounted for 77–87% of the total biomass, 1–3-order fine-root diameter around 0.28–0.38 mm, while >3-order fine root were 1.28–1.69 mm; the length of 1–3-order fine root was longer than the >3 order, and root length density, specific root length, and nutrient content between the 1–3 and >3 orders were different. At 2 × 2 m, 1–3-order fine-root biomass was the highest, 132.5 g/m3, and the 1–3-order fine-root length, diameter, surface, root length density was also the highest; at the same time, the 1–3-order fine-root total nitrogen and organic matter content was also the highest, while the >3 order was highest under 4 × 3 m or 4 × 5 m. The findings of this study show that stand density affected the available nutrient content of the soil. When soil resources were poor, the biomass, morphology, and chemical content of fine roots were adjusted to increase the nutrient absorption rate, particularly in the lower-order roots.


Sign in / Sign up

Export Citation Format

Share Document