Deep learning asan advanced concept of artificial intelligence

2018 ◽  
Vol 9 (1) ◽  
pp. 15-18
Author(s):  
Megha Gupta1 ◽  
Jitender Rai

This paper represented on the Deep learning technique growing in the learning community of machines, as traditional learning architecture has proven incompetent for the machine learning challenging tasks and strong feature of artificial intelligence (AI). Increasing and widespread availability of computing power, along the use of efficient training and improvement algorithms, has made it possible to implement, until then, the concept of deep learning. These development events deep learning architecture and algorithms look at cognitive neuroscience and point to biologically inspired solutions for learning. This paper represented on the rule of Convolutional Neural Networks (CNNs), Neural Networks (SNNs) and Hierarchical Temporary Memory (HTM), and other related techniques to the least mature technique.

Author(s):  
Tim Hulsen

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines, using machine learning, deep learning and neural networks. AI enables machines to learn from experience and perform human-like tasks. The field of AI research has been developing fast over the past five to ten years, due to the rise of ‘big data’ and increasing computing power. In the medical area, AI can be used to improve diagnosis, prognosis, treatment, surgery, drug discovery, or for other applications. Therefore, both academia and industry are investing a lot in AI. This review investigates the biomedical literature (in the PubMed and Embase databases) by looking at bibliographical data, observing trends over time and occurrences of keywords. Some observations are made: AI has been growing exponentially over the past few years; it is used mostly for diagnosis; COVID-19 is already in the top-5 of diseases studied using AI; the United States, China, United Kingdom, South Korea and Canada are publishing the most articles in AI research; MIT is the world’s leading university in AI research; and convolutional neural networks are by far the most popular deep learning algorithms at this moment. These trends could be studied in more detail, by studying more literature databases or by including patent databases. More advanced analyses could be used to predict in which direction AI will develop over the coming years. The expectation is that AI will keep on growing, in spite of stricter privacy laws, more need for standardization, bias in the data, and the need for building trust.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Author(s):  
Daniel Auge ◽  
Julian Hille ◽  
Etienne Mueller ◽  
Alois Knoll

AbstractBiologically inspired spiking neural networks are increasingly popular in the field of artificial intelligence due to their ability to solve complex problems while being power efficient. They do so by leveraging the timing of discrete spikes as main information carrier. Though, industrial applications are still lacking, partially because the question of how to encode incoming data into discrete spike events cannot be uniformly answered. In this paper, we summarise the signal encoding schemes presented in the literature and propose a uniform nomenclature to prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical foundations as well as applications of the encoding schemes. This work provides a foundation in spiking signal encoding and gives an overview over different application-oriented implementations which utilise the schemes.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andre Esteva ◽  
Katherine Chou ◽  
Serena Yeung ◽  
Nikhil Naik ◽  
Ali Madani ◽  
...  

AbstractA decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


2021 ◽  
Vol 6 (5) ◽  
pp. 10-15
Author(s):  
Ela Bhattacharya ◽  
D. Bhattacharya

COVID-19 has emerged as the latest worrisome pandemic, which is reported to have its outbreak in Wuhan, China. The infection spreads by means of human contact, as a result, it has caused massive infections across 200 countries around the world. Artificial intelligence has likewise contributed to managing the COVID-19 pandemic in various aspects within a short span of time. Deep Neural Networks that are explored in this paper have contributed to the detection of COVID-19 from imaging sources. The datasets, pre-processing, segmentation, feature extraction, classification and test results which can be useful for discovering future directions in the domain of automatic diagnosis of the disease, utilizing artificial intelligence-based frameworks, have been investigated in this paper.


Author(s):  
Jay Rodge ◽  
Swati Jaiswal

Deep learning and Artificial intelligence (AI) have been trending these days due to the capability and state-of-the-art results that they provide. They have replaced some highly skilled professionals with neural network-powered AI, also known as deep learning algorithms. Deep learning majorly works on neural networks. This chapter discusses about the working of a neuron, which is a unit component of neural network. There are numerous techniques that can be incorporated while designing a neural network, such as activation functions, training, etc. to improve its features, which will be explained in detail. It has some challenges such as overfitting, which are difficult to neglect but can be overcome using proper techniques and steps that have been discussed. The chapter will help the academician, researchers, and practitioners to further investigate the associated area of deep learning and its applications in the autonomous vehicle industry.


Sign in / Sign up

Export Citation Format

Share Document