A fixed-bed electrochemical reactor with nano-TiO2 loading flat-sheet carbon membrane as anode for phenolic wastewater treatment

2018 ◽  
Vol 118 ◽  
pp. 113-119 ◽  
Author(s):  
Hongsen Hui ◽  
Hong Wang ◽  
Yinghui Mo ◽  
Zhen Yin ◽  
Jianxin Li ◽  
...  
2003 ◽  
Vol 47 (1) ◽  
pp. 113-120 ◽  
Author(s):  
D.S. Chaudhary ◽  
S. Vigneswaran ◽  
V. Jegatheesan ◽  
H.H. Ngo ◽  
H. Moon ◽  
...  

Wastewater treatment has always been a major concern in the developed countries. Over the last few decades, activated carbon adsorption has gained importance as an alternative tertiary wastewater treatment and purification process. In this study, granular activated carbon (GAC) adsorption was evaluated in terms of total organic carbon (TOC) removal from low strength synthetic wastewater. This paper provides details on adsorption experiments conducted on synthetic wastewater to develop suitable adsorption isotherms. Although the inorganics used in the synthetic wastewater solution had an overall unfavourable effect on adsorption of organics, the GAC adsorption system was found to be effective in removing TOC from the wastewater. This study showed that equation of state (EOS) theory was able to fit the adsorption isotherm results more precisely than the most commonly used Freundlich isotherm. Biodegradation of the organics with time was the most crucial and important aspect of the system and it was taken into account in determining the isotherm parameters. Initial organic concentration of the wastewater was the determining factor of the model parameters, and hence the isotherm parameters were determined covering a wide range of initial organic concentrations of the wastewater. As such, the isotherm parameters derived using the EOS theory could predict the batch adsorption and fixed bed adsorption results of the multi-component system successfully. The isotherm parameters showed a significant effect on the determination of the mass transfer coefficients in batch and fixed bed systems.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 673 ◽  
Author(s):  
Juan Rueda Márquez ◽  
Irina Levchuk ◽  
Mika Sillanpää

Catalytic wet peroxide oxidation (CWPO) is emerging as an advanced oxidation process (AOP) of significant promise, which is mainly due to its efficiency for the decomposition of recalcitrant organic compounds in industrial and urban wastewaters and relatively low operating costs. In current study, we have systemised and critically discussed the feasibility of CWPO for industrial and urban wastewater treatment. More specifically, types of catalysts the effect of pH, temperature, and hydrogen peroxide concentrations on the efficiency of CWPO were taken into consideration. The operating and maintenance costs of CWPO applied to wastewater treatment and toxicity assessment were also discussed. Knowledge gaps were identified and summarised. The main conclusions of this work are: (i) catalyst leaching and deactivation is one of the main problematic issues; (ii) majority of studies were performed in semi-batch and batch reactors, while continuous fixed bed reactors were not extensively studied for treatment of real wastewaters; (iii) toxicity of wastewaters treated by CWPO is of key importance for possible application, however it was not studied thoroughly; and, (iv) CWPO can be regarded as economically viable for wastewater treatment, especially when conducted at ambient temperature and natural pH of wastewater.


1996 ◽  
Vol 14 (3) ◽  
pp. 145-150 ◽  
Author(s):  
E. S�nchez ◽  
R. Borja ◽  
L. Travieso

2021 ◽  
Author(s):  
Juan Arévalo ◽  
Juan Manuel Ortiz ◽  
Eduard Borràs-Camps ◽  
Victor Monsalvo-Garcia ◽  
Maria D. Kennedy ◽  
...  

The world's largest demonstrator of a revolutionary energy system in desalination for drinking water production is in operation. MIDES uses Microbial Desalination Cells (MDC) in a pre-treatment step for reverse osmosis (RO), for simultaneous saline stream desalination and wastewater treatment. MDCs are based on bio-electro-chemical technology, in which biological wastewater treatment can be coupled to the desalination of a saline stream using ion exchange membranes without external energy input. MDCs simultaneously treat wastewater and perform desalination using the energy contained in the wastewater. In fact, an MDC can produce around 1.8 kWh of bioelectricity from the energy contained in 1 m3 of wastewater. Compared to traditional RO, more than 3 kWh/m3 of electrical energy is saved. With this novel technology, two low-quality water streams (saline stream, wastewater) are transformed into two high-quality streams (desalinated water, treated wastewater) suitable for further uses. An exhaustive scaling-up process was carried out in which all MIDES partners worked together on nanostructured electrodes, antifouling membranes, electrochemical reactor design and optimization, life cycle assessment, microbial electrochemistry and physiology expertise, and process engineering and control. The roadmap of the lab-MDC upscaling goes through the assembly of a pre-pilot MDC, towards the development of the demonstrator of the MDC technology (patented). Nominal desalination rate between 4-11 Lm-2h-1 is reached with a current efficiency of 40 %. After the scalability success, two MDC pilot plants were designed and constructed consisting of one stack of 15 MDC pilot units with a 0.4 m2 electrode area per unit. This book presents the information generated throughout the EU funded MIDES project and includes the latest developments related to desalination of sea water and brackish water by applying microbial desalination cells. ISBN: 9781789062113 (Paperback) ISBN: 9781789062120 (eBook)


Author(s):  
Claudia L. M. Gasparovic ◽  
Eduardo Eyng ◽  
Laercio M. Frare ◽  
Larissa B. C. Sabbi ◽  
Michelle Budke Costa ◽  
...  

2020 ◽  
Vol 31 (16) ◽  
pp. 13511-13520
Author(s):  
Jiaxin Xu ◽  
Xiaoping Liang ◽  
Xiaowei Fan ◽  
Yuxi Song ◽  
Zenghua Zhao ◽  
...  

1988 ◽  
Vol 20 (11-12) ◽  
pp. 489-491
Author(s):  
J. C. Block ◽  
N. Nouvion ◽  
J. M. Cahen ◽  
Y. Lesty ◽  
G. M. Faup

Experimental runs were carried out on an upflow fixed-bed reactor. The process cycle of 24 hours was determined by following head losses used as an indicator of the clogging of the filter and of the biomass growth. Thanks to a protocol of dispersion of the biomass present into the filter, two fractions defined as fixed and shared biomass were obtained. The specific dehydrogenase activities or the specific oxygen uptake rates of the dispersed biomass were always greater than those of the fixed biomass. The aggregation of the biomass into the reactor prevents its potential activity being used to the full.


Sign in / Sign up

Export Citation Format

Share Document