Corrosion of Rusted Steel in Aqueous Solutions of Tannic Acid

CORROSION ◽  
1992 ◽  
Vol 48 (12) ◽  
pp. 1032-1039 ◽  
Author(s):  
M. Morcillo ◽  
S. Feliu ◽  
J. Simancas ◽  
J. M. Bastidas ◽  
J. C. Galvan ◽  
...  

Abstract The use of tannic acid to inhibit metal corrosion has been a controversial issue, particularly in relation to its application to rusted steel prior to painting. In this work, the protective efficiency of aqueous solutions of tannic acid applied on uncontaminated rusted steel is studied. This is done by investigating the changes undergone by the rust layer, the solubility of the tannate films formed, and the resulting inhibition efficiency. This required the use of a variety of experimental techniques including climatic chamber tests, electrochemical measurements, and x-ray photoelectron spectroscopy. The high solubility of the films and the low anti-corrosion efficiency of the treatment question the suitability of tannic acid solutions for protection of rusted steel prior to painting.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lefu Mei ◽  
Libing Liao ◽  
Zise Wang ◽  
Chunchun Xu

Alpha, beta, gamma, and delta hydroxyl ferric oxides (FeOOH), as the most common rust layers on iron surface, play different roles in iron preservation. Using modern surface analysis technologies such as X-ray diffraction (XRD), infrared spectra (IR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), we studied the interactions between these four types of synthetic FeOOH and phosphoric and tannic acid of different concentrations and proportions. A 3% tannic acid + 10% phosphoric acid + FeOOH was the most suitable formula for rust stabilizer and its reaction products were made up of iron phosphate and chelate of iron and tannin. This research provided technical basis in distinguishing FeOOH and selecting rust layer stabilizer for the preservation of iron, especially iron cultural relics.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2016 ◽  
Vol 144 (15) ◽  
pp. 154704 ◽  
Author(s):  
Giorgia Olivieri ◽  
Krista M. Parry ◽  
Cedric J. Powell ◽  
Douglas J. Tobias ◽  
Matthew A. Brown

2016 ◽  
Vol 73 (11) ◽  
pp. 2747-2753 ◽  
Author(s):  
Wusong Kong ◽  
Hongxia Qu ◽  
Peng Chen ◽  
Weihua Ma ◽  
Huifang Xie

In this study, Cu2O-CuO/ZSM-5 nanocomposite was synthesized by the impregnation method, and its catalytic performance for the destruction of AO7 in aqueous solutions was investigated. The morphology, structure and surface element valence state of Cu2O-CuO/ZSM-5 were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The operating conditions on the degradation of AO7 by Cu2O-CuO/ZSM-5, such as initial pH values, concentration of AO7 and catalyst dosage were investigated and optimized. The results showed that the sample had good catalytic activity for destruction of AO7 in the absence of a sacrificial agent (e.g. H2O2): it could degrade 91% AO7 in 140 min at 25 °C and was not restricted by the initial pH of the AO7 aqueous solutions. Cu2O-CuO/ZSM-5 exhibited stable catalytic activity with little loss after three successive runs. The total organic carbon and chemical oxygen demand removal efficiencies increased rapidly to 69.36% and 67.3% after 120 min of treatment by Cu2O-CuO/ZSM-5, respectively.


Langmuir ◽  
2018 ◽  
Vol 34 (45) ◽  
pp. 13497-13504
Author(s):  
Marie Lucas ◽  
Merve Yeşilbaş ◽  
Andrey Shchukarev ◽  
Jean-François Boily

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4245
Author(s):  
Gaetano Palumbo ◽  
Kamila Kollbek ◽  
Roma Wirecka ◽  
Andrzej Bernasik ◽  
Marcin Górny

The effect of CO2 partial pressure on the corrosion inhibition efficiency of gum arabic (GA) on the N80 carbon steel pipeline in a CO2-water saline environment was studied by using gravimetric and electrochemical measurements at different CO2 partial pressures (e.g., PCO2 = 1, 20 and 40 bar) and temperatures (e.g., 25 and 60 °C). The results showed that the inhibitor efficiency increased with an increase in inhibitor concentration and CO2 partial pressure. The corrosion inhibition efficiency was found to be 84.53% and 75.41% after 24 and 168 h of immersion at PCO2 = 40 bar, respectively. The surface was further evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS) measurements. The SEM-EDS and GIXRD measurements reveal that the surface of the metal was found to be strongly affected by the presence of the inhibitor and CO2 partial pressure. In the presence of GA, the protective layer on the metal surface becomes more compact with increasing the CO2 partial pressure. The XPS measurements provided direct evidence of the adsorption of GA molecules on the carbon steel surface and corroborated the gravimetric results.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 100 ◽  
Author(s):  
Anton Zubrik ◽  
Marek Matik ◽  
Michal Lovás ◽  
Zuzana Danková ◽  
Mária Kaňuchová ◽  
...  

The continued decrease in water quality requires new advances in the treatment of wastewater, including the preparation of novel, effective, environmentally friendly, and affordable sorbents of toxic pollutants. We introduce a simple non-conventional mechanochemical synthesis of magnetically responsive materials. Magnetic lignite and magnetic char were prepared by high-energy ball co-milling from either raw Slovak lignite or coal-based char together with a ferrofluid. The products were characterised by X-ray diffraction, electron microscopy, 57Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), volumetric magnetic susceptibility, and low-temperature nitrogen adsorption, and both magnetic carbons were comparatively tested as potential sorbents of As(V) oxyanions and Cd(II) cations in aqueous solutions. The magnetic char was an excellent sorbent of As(V) oxyanions (Qm = 19.9 mg/g at pH 3.9), whereas the magnetic lignite was less effective. The different sorption properties towards arsenic anions may have been due to different oxidation states of iron on the surfaces of the two magnetic composites (determined by XPS), although the overall state of iron monitored by Mössbauer spectroscopy was similar for both samples. Both magnetic composites were effective sorbents for removing Cd(II) cations (Qm (magnetic lignite) = 70.4 mg/g at pH 6.5; Qm (magnetic char) = 58.8 mg/g at pH 6.8).


Langmuir ◽  
2013 ◽  
Vol 29 (8) ◽  
pp. 2623-2630 ◽  
Author(s):  
Kenichi Shimizu ◽  
Andrey Shchukarev ◽  
Philipp A. Kozin ◽  
Jean-François Boily

Sign in / Sign up

Export Citation Format

Share Document