Aqueous Corrosion of Deformed Steel Under Simulated Diluted Bitumen

CORROSION ◽  
10.5006/3121 ◽  
2019 ◽  
Vol 75 (10) ◽  
pp. 1194-1206
Author(s):  
Hongxing Liang ◽  
Rebecca Filardo Schaller ◽  
Edouard Asselin

The effect of predeformation on corrosion of ASTM A106B pipeline steel exposed to 1.7 mM sodium chloride droplets covered by simulated diluted bitumen was evaluated. The microstructures of ASTM A106B pipeline steel with and without predeformation were examined by electron backscatter diffraction and optical microscope. Corrosion of pipeline steel under the chloride droplet covered by simulated diluted bitumen for 5 min was studied with and without predeformation using scanning electron microscopy. Corrosion was initiated at the surface of ASTM A106B pipeline steel after 5 min of exposure. The predeformation increased the number of pits initiated at the steel surface and the number of partially dissolved inclusions. Scanning electron microscopy, profilometry, and x-ray photoelectron spectroscopy measurements were used to characterize the corrosion of the specimens with and without prior deformation after 24 h of exposure to an oil-covered droplet. The corrosion products coalesced and formed a small circular ring which deviated from the geometric center of the droplet. The diameters of the circular rings for the unbent and pre-bent specimens were 2.371±0.125 mm and 2.465±0.046 mm, respectively; the distances between the circular ring centers and droplet centers were 0.599±0.124 mm and 0.620±0.190 mm, respectively. The average corrosion penetration of the predeformed specimen was 1.18±0.09 times higher than that of the specimen without predeformation.

2013 ◽  
Vol 1525 ◽  
Author(s):  
Xiaowei Wu ◽  
Robert Hull

ABSTRACTThermal scanning electron microscopy is a new temperature mapping technique based on thermal diffuse scattering in electron backscatter diffraction in a scanning electron microscope. It provides both nano-scale resolution and far-field non-contact temperature mapping capabilities no other methods can adequately combine. While a calculated spatial resolution of less than 100 nm has already been realized using 20 keV electrons, lower energy incident electrons should enable still higher spatial resolution (even down to 10 nm). In this paper, the feasibility of this approach is examined.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi ◽  
Patrick Chapon ◽  
Sofia Gaiaschi ◽  
Krzysztof Rokosz ◽  
...  

In this study, the cerium-doped hydroxyapatite (Ca10−xCex(PO4)6(OH)2 with xCe = 0.1, 10Ce-HAp) coatings obtained by the spin coating method were presented for the first time. The stability of the 10Ce-HAp suspension particles used in the preparation of coatings was evaluated by ultrasonic studies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The surface morphology of the 10Ce-HAp coating was studied by SEM and atomic force microscopy (AFM) techniques. The obtained 10Ce-HAp coatings were uniform and without cracks or unevenness. Glow discharge optical emission spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of fine chemical depth profiling. The antifungal properties of the HAp and 10Ce-HAp suspensions and coatings were assessed using Candida albicans ATCC 10231 (C. albicans) fungal strain. The quantitative antifungal assays demonstrated that both 10Ce-HAp suspensions and coatings exhibited strong antifungal properties and that they successfully inhibited the development and adherence of C. albicans fungal cells for all the tested time intervals. The scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) visualization of the C. albicans fungal cells adherence to the 10Ce-HAp surface also demonstrated their strong inhibitory effects. In addition, the qualitative assays also suggested that the 10Ce-HAp coatings successfully stopped the biofilm formation.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Liu Liu ◽  
Decai Gong ◽  
Zhengquan Yao ◽  
Liangjie Xu ◽  
Zhanyun Zhu ◽  
...  

Abstract Historically, sutras played an important role in spreading Buddhist faith and doctrine, and today these remain important records of Buddhist thought and culture. A Mahamayuri Vidyarajni Sutra with polychrome paintings was found inside the cavity on top of the Nanmen Buddhist pagoda, built in the early Tang dynasty (618–627 CE) and located in Anhui Province, China. Textile was found on the preface which is strongly degraded and fragile. Unfortunately, the whole sutra is under severe degradation and is incomplete. Technical analysis based on scientific methods will benefits the conservation of the sutra. Optical microscopy (OM), micro-Raman spectroscopy combined with optical microscope (Raman), scanning electron microscopy in combination with energy dispersive X-ray analysis (SEM–EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the pigment and gilded material, as well as the paper fiber and textile. Pigments such as cinnabar, minium, paratacamite, azurite, lead white were found. Gilded material was identified as gold. A five-heddle warp satin, made of silk, was found as the textile on the preface of the sutra. The sutra’s preface and inner pages were made of paper comprised of bamboo and bark. As a magnificent yet recondite treasure of Buddhism, the sutra was analyzed for a better understanding of the material. A conservation project of the sutra will be scheduled accordingly.


2018 ◽  
Vol 186 ◽  
pp. 02001
Author(s):  
Teng-wei Zhu ◽  
Cheng-liang Miao ◽  
Zheng Cheng ◽  
Zhipeng Wang ◽  
Yang Cui ◽  
...  

The influence of the mechanical properties of X70 pipeline steel under different annealing temperature was studied. The corresponding microstructure was investigated by the Field Emission Scanning Electron Microscopy. The results showed that the yield strength and the tensile strength both experienced from rise to decline with the increase of annealing temperature. The grain sizes were coarse and a large amount of cementite precipitated due to preserving temperature above 550 °, which induced matrix fragmentation and deteriorate the -10 ° DWTT Toughness. There were little changes on the microstructure and mechanical properties when the annealing temperature was under 500 °.


Sign in / Sign up

Export Citation Format

Share Document