scholarly journals Optical Devices (Semiconductor Lasers and Photodiodes)

Author(s):  
Fumio KOYAMA
2011 ◽  
Vol 127 ◽  
pp. 25-31
Author(s):  
Xiang Li ◽  
Xiao Hui Zhang

Large aperture collimator which has been widely used for calibrating and testing various optical devices plays an essential role in correlative laboratories. As being the basic testing and calibration equipment, the large aperture collimator’s accuracy should be much higher than the device under testing in order to ensure the accuracy of the measurement. However, the process of adjusting the collimator is extremely complicated due to the collimator’s large aperture and long focal length. So it is difficult to ensure the measurement’s quality and easy to cause the system being vulnerable to the surrounding environment. One of the most common problems is defocus. In order to solve the problem above, this issue presents a new type of autocollimator autofocusing system which uses pentaprism instead of using large-aperture plane mirror, semiconductor lasers as light source and CCD sensor as receiver. The system is smaller, lighter, and more convenient when using. The computer simulation shows that the autofocusing system’s resolution could reach the accuracy of 40μm. If we use the relevant algorithms to execute the sub-pixel scanning, the resolution could reach the accuracy of 10μm. It shows that the system could satisfy the required testing precision of testing large aperture optical device.


1993 ◽  
Vol 21 (7) ◽  
pp. 792-807
Author(s):  
Yawara KANEKO ◽  
Tomoyuki MIYAMOTO ◽  
Kenichi IGA ◽  
Misuzu SAGAWA ◽  
Hiromu TOBA ◽  
...  

1990 ◽  
Vol 184 ◽  
Author(s):  
O. Ueda

ABSTRACTMaterial issues in III-V alloy semiconductors and our current understanding of degradation in III-V semiconductor lasers and LED's are systematically reviewed.Generation of defects and thermal instability are among these issues for these systems. Defects introduced during crystal growth are classified into two types: interface defects and bulk defects. Defects belonging to the former type are stacking faults, V-shaped dislocations, dislocation clusters, microtwins, inclusions, and misfit dislocations, and the latter group includes precipitates and dislocation loops. Defects in the substrate can also be propagated into the epi-layer. Structural imperfections due to thermal instability are also found. They ame quasi-periodic modulated structures due to spinodal decomposition of the crystal either at the liquid/solid interface or growth surface, and atomic ordering which also occurs on the growth surface through migration and reconstruction of the deposited atoms.Three major degradation modes, rapid degradation, gradual degradation, and catastrophic failure, are discussed. For rapid degradation, recombination-enhanced dislocation climb and glide are responsible for degradation. Differences in the ease with which these phenomena occur in different hetero-structures are presented. Based on the results, dominant parameters involved in the phenomena are discussed. Gradual degradation takes place presumably due to recombination enhanced point defect reaction in GaAlAs/GaAs-based optical devices. This mode is also enhanced by the internal stress due to lattice mismatch. However, we do not observe this mode in InGaAsP/InP-based optical devices. Catastrophic failure is found to be due to catastrophic optical damage at a mirror or at a defect in GaAlAs/GaAs DH lasers, but not in InGaAsP/InP DH lasers. In each degradation mode, the role of defects in the degradation and methods of elimination of degradation are discussed.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
F. A. Ponce ◽  
R. L. Thornton ◽  
G. B. Anderson

The InGaAlP quaternary system allows the production of semiconductor lasers emitting light in the visible range of the spectrum. Recent advances in the visible semiconductor diode laser art have established the viability of diode structures with emission wavelengths comparable to the He-Ne gas laser. There has been much interest in the growth of wide bandgap quaternary thin films on GaAs, a substrate most commonly used in optoelectronic applications. There is particular interest in compositions which are lattice matched to GaAs, thus avoiding misfit dislocations which can be detrimental to the lifetime of these materials. As observed in Figure 1, the (AlxGa1-x)0.5In0.5P system has a very close lattice match to GaAs and is favored for these applications.In this work, we have studied the effect of silicon diffusion in GaAs/InGaAlP structures. Silicon diffusion in III-V semiconductor alloys has been found to have an disordering effect which is associated with removal of fine structures introduced during growth. Due to the variety of species available for interdiffusion, the disordering effect of silicon can have severe consequences on the lattice match at GaAs/InGaAlP interfaces.


Author(s):  
S. Hillyard ◽  
Y.-P. Chen ◽  
J.D. Reed ◽  
W.J. Schaff ◽  
L.F. Eastman ◽  
...  

The positions of high-order Laue zone (HOLZ) lines in the zero order disc of convergent beam electron diffraction (CBED) patterns are extremely sensitive to local lattice parameters. With proper care, these can be measured to a level of one part in 104 in nanometer sized areas. Recent upgrades to the Cornell UHV STEM have made energy filtered CBED possible with a slow scan CCD, and this technique has been applied to the measurement of strain in In0.2Ga0.8 As wires.Semiconductor quantum wire structures have attracted much interest for potential device applications. For example, semiconductor lasers with quantum wires should exhibit an improvement in performance over quantum well counterparts. Strained quantum wires are expected to have even better performance. However, not much is known about the true behavior of strain in actual structures, a parameter critical to their performance.


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


2001 ◽  
Vol 20 (2) ◽  
pp. 159-169 ◽  
Author(s):  
M. Ganesh Madhan ◽  
P. R. Vaya ◽  
N. Gunasekaran

Sign in / Sign up

Export Citation Format

Share Document