scholarly journals Circ-VPS13C enhances cisplatin resistance in ovarian cancer via modulating miR-106b-5p/YWHAZ axis

Author(s):  
Hairong Yao ◽  
Dantong Liu ◽  
Fangyuan Gao ◽  
Qian Li ◽  
Shikai Liu

IntroductionOvarian cancer (OC) is the malignant tumor with the highest mortality among gynecological cancers. Chemotherapy resistance is a major obstacle to OC therapy. Circular RNAs (circRNAs) play crucial roles in cancer development and chemoresistance. However, the role and potential mechanism of has-circ-001567 (circ-VPS13C) in chemoresistance of OC remain unknown.Material and methodsThe levels of circ-VPS13C, miR-106b-5p and 14-3-3 zeta (YWHAZ) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability and calculate the half inhibition concentration (IC50) of cisplatin (DDP). The levels of autophagy-related markers were measured by western blot assay. Cell apoptosis and migration were evaluated by flow cytometry and transwell assay, respectively. The binding relationship between miR-106b-5p and circ-VPS13C or YWHAZ was confirmed by dual-luciferase reporter assay. Xenograft assay was performed to explore the role of circ-VPS13C in vivo.ResultsCirc-VPS13C and YWHAZ were up-regulated, while miR-106b-5p was down-regulated in DDP-resistant OC tissues and cells. Knockdown of circ-VPS13C enhanced DDP sensitivity by repressing autophagy in DDP-resistant cells. Circ-VPS13C increased DDP resistance via sponging miR-106b-5p. Moreover, miR-106b-5p directly targeted YWHAZ. Up-regulation of YWHAZ alleviated the decrease in DDP resistance caused by circ-VPS13C depletion. In addition, circ-VPS13C silencing decreased DDP resistance in vivo.ConclusionsCirc-VPS13C knockdown enhanced DDP sensitivity of OC through modulation of autophagy via the miR-106b-5p/YWHAZ axis, providing a new biomarker for improving the efficacy of OC chemotherapy.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenhua Du ◽  
Lei Wang ◽  
Yu Xia

Abstract Background Ovarian cancer (OC) is the gynecologic cancer with the highest mortality. Circular RNAs (circRNAs) play a vital role in the development and progression of cancer. This study aimed to explore the potential role of circ_0015756 in OC and its molecular mechanism. Methods The levels of circ_0015756, microRNA-942-5p (miR-942-5p) and Cullin 4B (CUL4B) were determined by quantitative real-time PCR (qRT-PCR) or Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and transwell assay. The levels of proliferation-related and metastasis-related proteins were measured by Western blot assay. The relationship between miR-942-5p and circ_0015756 or CUL4B was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft assay was used to analyze tumor growth in vivo. Results Circ_0015756 and CUL4B levels were increased, while miR-942-5p level was decreased in OC tissues and cells. Depletion of circ_0015756 suppressed proliferation, migration and invasion and promoted apoptosis in OC cells. Down-regulation of circ_0015756 hindered OC cell progression via modulating miR-942-5p. Also, up-regulation of miR-942-5p impeded OC cell development by targeting CUL4B. Mechanistically, circ_0015756 up-regulated CUL4B via sponging miR-942-5p. Moreover, circ_0015756 silencing inhibited tumor growth in vivo. Conclusion Knockdown of circ_0015756 suppressed OC progression via regulating miR-942-5p/CUL4B axis, suggesting that circ_0015756 might be a potential therapeutic target for ovarian cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanfei Liang ◽  
Kaiyi Meng ◽  
Rui Qiu

Background: Circular RNAs (circRNAs) have emerged as important regulators in diverse human malignancies, including ovarian cancer (OC). This study was performed to explore the function and regulatory mechanism underlying circ_0013958 in OC progression.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot assay was applied to examine the expression of circ_0013958, microRNA-637 (miR-637), and Plexin B2 (PLXNB2). The target relationship between miR-637 and circ_0013958 or PLXNB2 was verified by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Cell Counting Kit-8 (CCK-8) and colony formation assays were employed to detect cell viability and clonogenicity ability, respectively. Cell migration and invasion were analyzed by Transwell assay. Cell apoptosis was monitored by flow cytometry. The role of circ_0013958 in vivo was determined by xenograft tumor assay.Results: Circ_0013958 and PLXNB2 were upregulated, while miR-637 was downregulated in OC tissues and cells. Circ_0013958 acted as a sponge for miR-637 to regulate the expression of PLXNB2 in OC cells. The repression effects of circ_0013958 knockdown on cell proliferation, migration, invasion, and apoptosis in OC cells were partly attenuated by the miR-637 inhibitor. And miR-637 targeted PLXNB2 to suppress OC cell proliferation, migration, and invasion. Moreover, circ_0013958 silencing blocked OC tumor growth in vivo.Conclusion: Circ_0013958 knockdown impeded OC development through modulating the miR-637/PLXNB2 axis, highlighting a therapeutic target for OC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruirui Zhang ◽  
Huanyu Zhao ◽  
Hongmei Yuan ◽  
Jian Wu ◽  
Haiyan Liu ◽  
...  

Background: Chemoresistance is a major barrier to the treatment of human cancers. Circular RNAs (circRNAs) are implicated in drug resistance in cancers, including gastric cancer (GC). In this study, we aimed to explore the functions of circRNA Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (circARVCF) in cisplatin (DDP) resistance in GC.Methods: The expression of circARVCF, microRNA-1205 (miR-1205) and fibroblast growth factor receptor 1 (FGFR1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate DDP resistance and cell colony formation ability. Transwell assay was conducted to assess cell migration and invasion. Flow cytometry analysis was done to analyze cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were manipulated to analyze the relationships of circARVCF, miR-1205 and FGFR1. Murine xenograft model was constructed to explore DDP resistance in vivo.Results: CircARVCF level was increased in DDP-resistant GC tissues and cells. CircARVCF silencing inhibited DDP resistance, colony formation and metastasis and induced apoptosis in DDP-resistant GC cells. CircARVCF directly interacted with miR-1205 and miR-1205 inhibition reversed circARVCF silencing-mediated effect on DDP resistance in DDP-resistant GC cells. FGFR1 served as the target gene of miR-1205. MiR-1205 overexpression restrained the resistance of DDP-resistant GC cells to DDP, but FGFR1 elevation abated the effect. In addition, circARVCF knockdown repressed DDP resistance in vivo.Conclusion: CircARVCF enhanced DDP resistance in GC by elevating FGFR1 through sponging miR-1205.


2022 ◽  
Vol 11 ◽  
Author(s):  
Qian Wang ◽  
Xin Wei ◽  
Lanyan Hu ◽  
Lingling Zhuang ◽  
Hong Zhang ◽  
...  

BackgroundCisplatin (DDP) resistance remains a key challenge in improving the clinical outcome of patients with ovarian cancer (OC). Gli2 overexpression can lead to DDP resistance in OC cells, but the specific underlying regulatory mechanism remains unclear. The membrane transporter encoding gene MDR1 positively regulates chemotherapy resistance in various cancer types. We evaluated MDR1 as a potential Gli2 downstream target and the contribution of the Gli2/MDR1 axis in promoting DDP resistance in OC cells.MethodsTo generate drug-resistant SKOV3/DDP cells, SKOV3 cells were grown for six months under continuous induction wherein the DDP concentration was steadily increased. Gli2 expression in OC cells with varying DDP sensitivities was detected using western blot. Cell counting kit-8 assays were used to assess the DDP sensitivity of SKOV3, SKOV3/DDP, A2780, and A2780/DDP cells and reversal of DDP resistance in SKOV3/DDP and A2780/DDP cells. Cell proliferation was analyzed using 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays. The transcriptional regulation of MDR1 by Gli2 was determined using luciferase reporter assays. Finally, xenograft OC tumors were generated in nude mice, which were then treated with intraperitoneal DDP or phosphate-buffered saline (PBS) injections to investigate if Gli2 affected DDP resistance in OC in vivo.ResultsDDP-resistant SKOV3/DDP and A2780/DDP cells showed higher expression of Gli2 and MDR1 as compared with that in DDP-sensitive OC cells. Gli2 knockdown in SKOV3/DDP cells significantly reduced MDR1 expression, whereas it increased DNA damage, thereby sensitizing OC cells to DDP. Similar results were obtained after targeting Gli2 expression with the Gli-antagonist 61 inhibitor (GANT61) in SKOV3/DDP and A2780/DDP cells. In cells stably overexpressing Gli2, treatment with gradient concentrations of verapamil, an MDR1 inhibitor, significantly inhibited MDR1 expression. Our findings indicate that downregulation of MDR1 expression may reverse OC cell resistance to DDP. Moreover, dual-luciferase reporter gene assays confirmed that MDR1 is a direct downstream target of Gli2, with Gli2 positively regulating MDR1 expression. Finally, subcutaneous xenotransplantation in nude mice demonstrated that Gli2 plays a key role in regulating OC drug resistance.ConclusionsWe identified a mechanism by which Hedgehog-Gli signaling regulates OC chemoresistance by modulating MDR1 expression. Hence, Gli2 and MDR1 are potential biomarkers and therapeutic targets in patients with chemoresistant OC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guanhong Lin ◽  
Shenyu Wang ◽  
Xinyu Zhang ◽  
Dan Wang

Abstract Background Circular RNAs (circRNAs) can regulate gene expression in different malignancies. However, the biological functions of circRNA polo-like kinase-1 (circPLK1) in the tumorigenesis of breast cancer (BC) and its potential mechanisms have not been well elucidated yet. Methods The expression levels of circPLK1, microRNA-4500 (miR-4500), insulin-like growth factor 1 (IGF1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, cell cycle distribution, cell migration and invasion were determined by Cell Counting Kit-8 (CCK-8) assay, flow cytometry and transwell assay, respectively. Western blot assay was used to analyze the protein levels of cyclin-dependent kinase (CDK) 4 and CDK-6. The relationship between miR-4500 and circPLK1 or IGF1 was predicted by starBase v3.0 and verified by dual-luciferase reporter assay and RNA pull-down assay. The mice xenograft model was established to investigate the roles of circPLK1 in vivo. Results CircPLK1 and IGF1 were upregulated and miR-4500 was downregulated in BC tissues and cells. Interference of circPLK1 inhibited BC cell growth, migration and invasion, which was reversed by overexpression of IGF1. Moreover, circPLK1 could directly bind to miR-4500 and IGF1 was verified as a direct target of miR-4500. Furthermore, IGF1 overexpression abated the inhibitory effects of miR-4500 upregulation on proliferation, migration and invasion of BC cells. Mechanically, circPLK1 was a sponge of miR-4500 to regulate IGF1 expression in BC cells. Besides, circPLK1 knockdown suppressed tumor growth via upregulating miR-4500 and downregulating IGF1. Conclusions CircPLK1 silence inhibited BC cell growth, migration and invasion by regulating miR-4500/IGF1 axis, suggesting circPLK1/miR-4500/IGF axis might be a potential therapeutic target.


2020 ◽  
Author(s):  
Jun Liu ◽  
Wenshuai Zhu ◽  
Jianqin Ji

Abstract Background Osteosarcoma (OS) is a common aggressive primary sarcoma of bone. Drug resistance is a huge obstacle to chemotherapy for cancer. This study aimed to investigate the role and mechanism of circ_0002060 in OS resistance to doxorubicin (DOX). Methods The levels of circ_0002060, miR-198 and ATP binding cassette subfamily B member 1 (ABCB1) were measured by quantitative real-time polymerase chain reaction or western blot assay. Kaplan-Meier analysis was performed to determine the relationship between circ_0002060 expression and overall survival. The half inhibition concentration (IC50) of doxorubicin was calculated by Cell Counting Kit-8 (CCK-8) assay. Cell proliferation was assessed by colony formation assay. Cell apoptosis was monitored by flow cytometry. The levels of apoptosis-related proteins were measured by western blot assay. Xenograft assay was utilized to analyze the effect of circ_0002060 on DOX resistance in vivo . The interaction among circ_0002060, miR-198 and ABCB1 were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation assay or RNA pull-down assay. Results Circ_0002060 and ABCB1 were up-regulated, while miR-198 was down-regulated in OS tissues and DOX-resistant OS cells. Circ_0002060 silence reduced DOX resistance in vitro and in vivo . Moreover, circ_0002060 enhanced DOX resistance via sponging miR-198. Besides, miR-198 decreased DOX resistance by binding to ABCB1. In addition, circ_0002060 sponged miR-198 to up-regulate ABCB1 expression. Conclusion Circ_0002060 enhanced doxorubicin resistance of OS by regulating miR-198/ABCB1 axis, which provides potential therapeutic targets for OS therapy.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Liu ◽  
Ping Cheng ◽  
Jianjun Liang ◽  
Xiaoming Zhao ◽  
Wei Du

Abstract Background Mounting evidence indicates that circular RNAs (circRNAs) participate in the occurrence and development of various diseases, including osteoarthritis (OA). However, the effects and molecular mechanism of circ_0128846 in OA have not been reported. Methods The expression levels of circ_0128846, microRNA-127-5p (miR-127-5p), and nicotinamide phosphoribosyltransferase (NAMPT) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was examined by flow cytometry and western blot assay. Inflammatory response and cartilage extracellular matrix (ECM) degradation were evaluated by western blot assay. The relationship between miR-127-5p and circ_0128846 or NAMPT was predicted by bioinformatics tools and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Results Circ_0128846 and NAMPT were upregulated and miR-127-5p was downregulated in OA cartilage tissues. Knockdown of circ_0128846 increased cell viability and inhibited apoptosis, inflammation and ECM degradation in OA chondrocytes, while these effects were reversed by downregulating miR-127-5p. Moreover, circ_0128846 positively regulated NAMPT expression by sponging miR-127-5p. Furthermore, miR-127-5p promoted cell viability and suppressed apoptosis, inflammation, and ECM degradation in OA chondrocytes by directly targeting NAMPT. Conclusion Circ_0128846 knockdown might inhibit the progression of OA by upregulating miR-127-5p and downregulating NAMPT, offering a new insight into the potential application of circ_0128846 in OA treatment.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1415-1427
Author(s):  
Hui Chen ◽  
Chen Wu ◽  
Liang Luo ◽  
Yuan Wang ◽  
Fangxing Peng

Abstract Background Circular RNAs have been identified as crucial players in the initiation and progression of cancers, including colorectal cancer (CRC). The Has_circ_0000467 (circ_0000467) expression has been found to be upregulated in CRC, but its function and mechanism remain unclear. Methods The expression levels of circ_0000467, microRNA-4766-5p (miR-4766-5p), and Krueppel-like factor 12 (KLF12) were examined using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 assay and colony formation assay. The apoptosis was measured by flow cytometry. Transwell migration and invasion assays were applied to evaluate cell metastatic ability. Angiogenesis was detected using tube formation assay. All protein expressions were quantified by western blot assay. Dual-luciferase reporter assay was used to analyze intergenic binding. Xenograft models were constructed for the experiment of circ_0000467 in vivo. Results The expression of circ_0000467 was upregulated in CRC tissues and cells. Knockdown of circ_0000467 repressed cell proliferation, metastasis, and angiogenesis, but it induced apoptosis in CRC cells. circ_0000467 targeted miR-4766-5p and inhibited the expression of miR-4766-5p. Silencing of circ_0000467 inhibited CRC progression by upregulating miR-4766-5p. miR-4766-5p suppressed the expression of target gene KLF12 and KLF12 overexpression reversed the effects of miR-4766-5p on CRC cell behaviors. circ_0000467 positively regulated the expression of KLF12 by targeting miR-4766-5p. circ_0000467 downregulation in vivo reduced CRC tumorigenesis by regulating miR-4766-5p and KLF12. Conclusion circ_0000467 acted as an oncogene in CRC through regulating KLF12 expression by sponging miR-4766-5p. Therefore, circ_0000467 can be used as an effective target in CRC diagnosis and therapy.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wumei Lin ◽  
Haiyan Ye ◽  
Keli You ◽  
Le Chen

Abstract Background Ovarian cancer (OC) is a common fatal malignant tumor of female reproductive system worldwide. Growing studies have proofed that circular RNAs (circRNAs) engage in the regulation of various types of cancers. However, the underlying biological functions and effect mechanism of circular RNA_LARP4 (circ_LARP4) in OC have not been explored. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to detect the expression of circ_LARP4 in OC cells. The function of circ_LARP4 was measured by cell counting kit-8 (CCK-8), colony formation assay and transwell assay. RNA immunoprecipitation (RIP) assay and luciferase reporter assays assessed the binding correlation between miR-513b-5p and circ_LARP4 (or LARP4). Results The expression of circ_LARP4 in OC cells was much lower than that in human normal ovarian epithelial cells. Overexpressing circ_LARP4 impaired cell proliferation, invasion and migration abilities. Circ_LARP4 worked as a competing endogenous RNA (ceRNA) to sponge miR-513b-5p. Furthermore, LARP4 was indirectly modulated by circ_LARP4 as the downstream target of miR-513b-5p, as well as the host gene of circ_LARP4. Conclusion Circ_LARP4 could hamper cell proliferation and migration by sponging miR-513b-5p to regulate the expression of LARP4. This research may provide some referential value to OC treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongli Li ◽  
Yiwei Zhang ◽  
Huiqin Song ◽  
Li Li

Abstract Background Circular RNAs (circRNAs) are implicated in the carcinogenesis of human cancers. However, the functional roles of circRFX3 in glioma are not elucidated. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed for the levels of circRFX3, RFX3, miR-1179, miR-1229 and vasodilator stimulated phosphoprotein (VASP). Actinomycin D assay and RNase R assay were employed to analyze the characteristics of circRFX3. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were conducted for cell proliferation. Transwell assay was used for cell migration and invasion. Flow cytometry analysis was adopted for cell apoptosis. RNA pull-down assay, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to analyze the interaction between miR-1179/miR-1229 and circRFX3 or VASP. Western blot assay was conducted for VASP protein level. Murine xenograft model assay was used to investigate the role of circRFX3 in vivo. Results CircRFX3 level was increased in glioma tissues and cells. Knockdown of circRFX3 suppressed glioma cell proliferation, migration and invasion and promoted apoptosis in vitro and repressed tumorigenesis of glioma in vivo. MiR-1179 and miR-1229 were identified to be the targets of circRFX3. MiR-1179 or miR-1229 inhibition reversed the impacts of circRFX3 knockdown on glioma cell malignant behaviors. Additionally, VASP was demonstrated to be the target gene of miR-1179 and miR-1229, and VASP overexpression abolished the effect of circRFX3 knockdown on glioma cell progression. Conclusion CircRFX3 served as a tumor promoter in glioma via modulating miR-1179/miR-1229-VASP axis, which might provide a novel target for glioma therapy.


Sign in / Sign up

Export Citation Format

Share Document