Artificial Intelligence and the Temporality of Machine Images

Author(s):  
Andrew R. Johnston

DeepMind, a recent artificial intelligence technology created at Google, references in its name the relationship in AI between models of cognition used in this technology‘s development and its new deep learning algorithms. This chapter shows how AI researchers have been attempting to reproduce applied learning strategies in humans but have difficulty accessing and visualizing the computational actions of their algorithms. Google created an interface for engaging with computational temporalities through the production of visual animations based on DeepMind machine-learning test runs of Atari 2600 video games. These machine play animations bear the traces of not only DeepMind‘s operations, but also of contemporary shifts in how computational time is accessed and understood.

2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


2021 ◽  
Author(s):  
Yew Kee Wong

Deep learning is a type of machine learning that trains a computer to perform human-like tasks, such as recognizing speech, identifying images or making predictions. Instead of organizing data to run through predefined equations, deep learning sets up basic parameters about the data and trains the computer to learn on its own by recognizing patterns using many layers of processing. This paper aims to illustrate some of the different deep learning algorithms and methods which can be applied to artificial intelligence analysis, as well as the opportunities provided by the application in various decision making domains.


Author(s):  
Thiyagarajan P.

Digitalization is the buzz word today by which every walk of our life has been computerized, and it has made our life more sophisticated. On one side, we are enjoying the privilege of digitalization. On the other side, security of our information in the internet is the most concerning element. A variety of security mechanisms, namely cryptography, algorithms which provide access to protected information, and authentication including biometric and steganography, provide security to our information in the Internet. In spite of the above mechanisms, recently artificial intelligence (AI) also contributes towards strengthening information security by providing machine learning and deep learning-based security mechanisms. The artificial intelligence (AI) contribution to cyber security is important as it serves as a provoked reaction and a response to hackers' malicious actions. The purpose of this chapter is to survey recent papers which are contributing to information security by using machine learning and deep learning techniques.


Author(s):  
Ben Bright Benuwa ◽  
Yong Zhao Zhan ◽  
Benjamin Ghansah ◽  
Dickson Keddy Wornyo ◽  
Frank Banaseka Kataka

The rapid increase of information and accessibility in recent years has activated a paradigm shift in algorithm design for artificial intelligence. Recently, deep learning (a surrogate of Machine Learning) have won several contests in pattern recognition and machine learning. This review comprehensively summarises relevant studies, much of it from prior state-of-the-art techniques. This paper also discusses the motivations and principles regarding learning algorithms for deep architectures.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


Author(s):  
K. Bhargavi

Deep learning is one of the popular machine learning strategies that learns in a supervised or unsupervised manner by forming a cascade of multiple layers of non-linear processing units. It is inspired by the way of information processing and communication pattern of the typical biological nervous system. The deep learning algorithms learn through multiple levels of abstractions and hierarchy of concepts; as a result, it is found to be more efficient than the conventional non-deep machine learning algorithms. This chapter explains the basics of deep learning by highlighting the necessity of deep learning over non-deep learning. It also covers discussion on several recently developed deep learning architectures and popular tools available in market for deep learning, which includes Tensorflow, PyTorch, Keras, Caffe, Deeplearning4j, Pylearn2, Theano, CuDDN, CUDA-Convnet, and Matlab.


2020 ◽  
Vol 8 (6) ◽  
pp. 3896-3899

This paper comes up with the applications of Machine learning and deep learning algorithms for police work the 'fake news', that is, dishonorable news stories that come from the unauthorized article writers. This approach was enforced as software and tested against an information set. Aim is to separate the faux news, among the news spread in the articles. It’s required to create a model which is able to differentiate between “Real” news and “Fake” news. The model was created exploitation numerous deep and machine learning strategies. LSTM technique outperforms different classifiers and achieves the accuracy of 94%.


Author(s):  
Anna Nikolajeva ◽  
Artis Teilans

The research is dedicated to artificial intelligence technology usage in digital marketing personalization. The doctoral theses will aim to create a machine learning algorithm that will increase sales by personalized marketing in electronic commerce website. Machine learning algorithms can be used to find the unobservable probability density function in density estimation problems. Learning algorithms learn on their own based on previous experience and generate their sequences of learning experiences, to acquire new skills through self-guided exploration and social interaction with humans. An entirely personalized advertising experience can be a reality in the nearby future using learning algorithms with training data and new behaviour patterns appearance using unsupervised learning algorithms. Artificial intelligence technology will create website specific adverts in all sales funnels individually.


2021 ◽  
Vol 17 ◽  
Author(s):  
Prashanth Kulkarni ◽  
Manjappa Mahadevappa ◽  
Srikar Chilakamarri

: Artificial intelligence technology is emerging as a promising entity in cardiovascular medicine, potentially improving diagnosis and patient care. In this article, we review the literature on artificial intelligence and its utility in cardiology. We provide a detailed description of concepts of artificial intelligence tools like machine learning, deep learning, and cognitive computing. This review discusses the current evidence, application, prospects, and limitations of artificial intelligence in cardiology.


Sign in / Sign up

Export Citation Format

Share Document