Mesh stiffness of cylindrical gear including tooth surface – Friction based on FEA method

Author(s):  
L. Geng ◽  
N. Mimi ◽  
L. Lan ◽  
Z. Ying ◽  
W. Liyan
2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093750
Author(s):  
Hao Dong ◽  
Jianwen Zhang ◽  
Libang Wang

In order to study the influence of tooth surface friction on the non-linear bifurcation characteristics of multi-clearance gear drive system, a 6 degree-of-freedom bending torsional coupled vibration model was established. The time-varying mesh stiffness, backlash, support clearance and damping were considered comprehensively in this non-linear vibration model. Loaded tooth contact analysis was used to calculate the time-varying mesh stiffness. Based on the elasto-hydrodynamic lubrication, the time-varying friction coefficient was calculated. Runge–Kutta numerical method was used to solve the dimensionless dynamic differential equation. Using phase diagram, Poincaré diagram, time history diagram, and spectrum diagram, the influence of tooth surface friction on bifurcation characteristics was studied. The results show that the system undergoes a change from 1-periodic motion, multi-periodic motion, to chaotic motion through bifurcation and catastrophe when the speed changes independently. When the friction coefficient of tooth surface changes from 0, 0.05 to 0.09, the chaotic motion of the system is suppressed. Similarly, with the increase in tooth friction, the chaotic motion characteristics are suppressed. Tooth surface friction is the main factor affecting chaotic motion. With the increase in friction coefficient of tooth surface, the chaos characteristic does not change obviously and the vibration amplitude decreases slightly.


Author(s):  
Liming Wang ◽  
Zaigang Chen ◽  
Yimin Shao ◽  
Xi Wang

It was found that the vibration features resulted from tooth crack and sliding on the contact interfaces due to speed variation are very similar with each other, which is difficult to distinguish. So, it is meaningful to study whether they are the same or not. Firstly, a finite element model of a spur gear pair in mesh with tooth crack at pitch circle is established to calculate the effect of tooth crack on gear mesh stiffness. Then, combined with the tooth crack through mesh stiffness, a spur gear dynamic model with six degrees of freedom (dof) is developed to extract the dynamic features affected by the tooth crack. The tooth surface friction due to different relative velocity is also involved to study its effects on the dynamic characteristics of the gear system. Finally, comparisons are made between the dynamic features of the gear system with tooth crack and the tooth surface sliding to expose their effects to supply some theoretical guidance on fault detection.


2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.


Author(s):  
Chao Lin ◽  
Yanqun Wei ◽  
Zhiqin Cai

The compound transmission mechanism of curve-face gear is a new type of gear transmission based on the cam mechanism and the curve-face gear pair. It combines the transmission characteristics of the cam mechanism and noncircular bevel gear. When the compound transmission mechanism of curve-face gear is engaged in the meshing transmission, the rotating center of the cylindrical gear is fixed and used as the driving wheel, and the curve-face gear can generate the helical motion around the axis. In this paper, the meshing characteristics and motion laws of the compound transmission mechanism of the curve-face gear are studied based on the theory of screw. Based on the meshing theory of gears, the coordinate system of conjugate surfaces is established, the basic meshing theory and equation are obtained. On this basis, combined with the principle of the cam, the transmission principle is analyzed by the screw theory. The tooth surface equation of the compound transmission mechanism of curve-face gear is deduced based on the meshing theory and the related knowledge of geometry. The motion law of the curve-face gear and the change of the motion law with the change of the basic parameters of the gear pair with different design parameters are calculated and analyzed. An experimental platform is built to verify the law of motion, and the experimental results are compared with the theoretical values. The correctness of the theoretical analysis is verified, which provides a new way for the research of the compound transmission mechanism of the curve-face gear.


2021 ◽  
Vol 12 (1) ◽  
pp. 677-688
Author(s):  
Xinran Wang ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xingjian Dai ◽  
Haisheng Chen

Abstract. The tooth surface friction effects and the resulting tooth surface contact temperature are important factors for the dynamic characteristics of a gear-rotor system in compressed air energy storage (CAES). Therefore, a 3∘ of freedom finite-element model of the system is set up in which the lubrication state of the gear pair, tooth surface friction, contact temperature of the tooth surface, backlash and unbalanced excitation are considered. The friction coefficient is calculated according to the variation of the lubrication state, and the tooth surface contact temperature is derived based on the friction coefficient. The tooth profile deformation caused by the change in the contact temperature is calculated, and the resulting effects on backlash and comprehensive meshing stiffness are considered. The influence of rotating speed, torque load and viscosity of lubricating oil on the system response is studied, and the variation of the friction coefficient, flash temperature of the tooth surface, pressure of the tooth surface and so on are discussed in detail. The results indicate that when the friction coefficient is derived according to the variation of the lubrication state, the variation of the contact temperature of the tooth surface with rotating speed is quite different from that calculated based on a friction coefficient which is set artificially. This leads to a new variation of the dynamic response of the gear-rotor system, and the method of stabilizing the operation of the system is put forward based on the optimization curve for the operation of the system. The results obtained in this paper will provide a reference for the study and design of a gear-rotor system in CAES.


Author(s):  
Alessio Artoni ◽  
Massimo Guiggiani ◽  
Ahmet Kahraman ◽  
Jonny Harianto

Tooth surface modifications are small, micron-level intentional deviations from perfect involute geometries of spur and helical gears. Such modifications are aimed at improving contact pressure distribution, while minimizing the motion transmission error to reduce noise excitations. In actual practice, optimal modification requirements vary with the operating torque level, misalignments, and manufacturing variance. However, most gear literature has been concerned with determining optimal flank form modifications at a single design point, represented by fixed, single load and misalignment values. A new approach to the design of tooth surface modifications is proposed to handle such conditions. The problem is formulated as a robust design optimization problem, and it is solved, in conjunction with an efficient gear contact solver (LDP), by a direct search, global optimization algorithm aimed at guaranteeing global optimality of the obtained micro-geometry solutions. Several tooth surface modifications can be used as micro-geometry design variables, including profile, lead, and bias modifications. Depending on the contact solver capabilities, multiple performance metrics can be considered. The proposed method includes the capability of simultaneously and robustly handling several conflicting design objectives. In the present paper, peak contact stress and loaded transmission error amplitude are used as objective functions (to be minimized). At the end, two example optimizations are presented to demonstrate the effectiveness of the proposed method.


2010 ◽  
Vol 139-141 ◽  
pp. 2316-2321
Author(s):  
Jin Yuan Tang ◽  
Qi Bo Wang ◽  
Cai Wang Luo

The effect of surface friction on the dynamic response of spur gear pair is investigated in this paper. Firstly, surface friction during the mesh is described briefly, and realistic time-varying tooth stiffness and realistic static transmission error are introduced. Subsequently, the differential equation of the torsional vibration of gear transmission is developed in which the realistic time-varying stiffness and realistic static transmission error are incorporated. Finally, using the numerical simulation method, the solutions in time domain and spectrum graphs of the nonlinear system are obtained. Results show that surface friction has great influences on the dynamic responses nearby the pitch point but less influences far away the pitch point. Surface friction may also bring sudden change to the dynamic responses at pitch point when the rotational speed is low.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Alessio Artoni ◽  
Massimo Guiggiani ◽  
Ahmet Kahraman ◽  
Jonny Harianto

Tooth surface modifications are small, micron-level intentional deviations from perfect involute geometries of spur and helical gears. Such modifications are aimed at improving contact pressure distribution, while minimizing the motion transmission error to reduce noise excitations. In actual practice, optimal modification requirements vary with the operating torque level, misalignments, and manufacturing variance. However, most gear literature has been concerned with determining optimal flank form modifications at a single design point, represented by fixed, single load and misalignment values. A new approach to the design of tooth surface modifications is proposed to handle such conditions. The problem is formulated as a robust design optimization problem, and it is solved, in conjunction with an efficient gear contact solver (Load Distribution Program (LDP)), by a direct search, global optimization algorithm aimed at guaranteeing global optimality of the obtained microgeometry solutions. Several tooth surface modifications can be used as microgeometry design variables, including profile, lead, and bias modifications. Depending on the contact solver capabilities, multiple performance metrics can be considered. The proposed method includes the capability of simultaneously and robustly handling several conflicting design objectives. In the present paper, peak contact stress and loaded transmission error amplitude are used as objective functions (to be minimized). At the end, two example optimizations are presented to demonstrate the effectiveness of the proposed method.


2018 ◽  
Vol 211 ◽  
pp. 17002
Author(s):  
Guanghu Jin ◽  
Wei Ren ◽  
Rupeng Zhu

A dynamic model of power split transmission system with face gear and cylindrical gear is established. The factors including time-varying mesh stiffness, torsional stiffness, supporting stiffness, and clearance are considered in the model. The influence of the torsional stiffness of compound gear shaft on the load sharing coefficient is analyzed. The results show that the influence of the torsional stiffness of the compound gear shaft is obvious. Because the torsional stiffness of the output gear components is larger and the torsional stiffness of the input gear is smaller, so the input stage's deformation coordination ability is strong. Therefore, with the increase of the torsional stiffness of the compound gear shaft, the load sharing coefficient of the power input stages is improved, but the load sharing coefficient of the split torque stages and power confluence stages is worse. Hence, the torsional stiffness ratio of the transmission shaft should be rationally allocated under the condition that the torsional stiffness of the compound shaft is small.


Sign in / Sign up

Export Citation Format

Share Document