Open Lorawan Sensor Node Architecture for Agriculture Applications

2021 ◽  
Author(s):  
Philipp Bolte ◽  
Ulf Witkowski ◽  
Rolf Morgenstern

In agriculture, it becomes more and more important to have detailed data, e.g. about weather and soil quality, not only in large scale classic crop farming applications but also for urban agriculture. This paper proposes a modular wireless sensor node that can be used in a centralized data acquisition scenario. A centralized approach, in this case multiple sensor nodes and a single gateway or a set of gateways, can be easily installed even without local infrastructure as mains supply. The sensor node integrates a LoRaWAN radio module that allows long-range wireless data transmission and low-power battery operation for several months at reasonable module costs. The developed wireless sensor node is an open system with focus on easy adaption to new sensors and applications. The proposed system is evaluated in terms of transmission range, battery runtime and sensor data accuracy.

Author(s):  
Damiano Milani ◽  
Marco Bassetti ◽  
Francesco Braghin ◽  
Gisella Tomasini

Sensor nodes are innovative devices that can perform measurements on a large scale and communicate over a network. One of the most significant problems regarding the sensor nodes is how to supply power to a large number of devices. For this reason, they greatly benefit from energy harvesting techniques which can provide energy recovered directly from the environment. A study of the design and the modeling of an autonomous sensor node, powered by a vibrational piezoelectric harvester, is reported here. Subject of the first part of the analysis is a piezoelectric bimorph: an analytical model is proposed in order to estimate the performance, giving particular attention to the optimal mechanical and electrical parameters. The model is then validated through experimental tests, assuming different kinds of real scenarios. Then the results are used to design a device that can benefit from this harvester. In particular a wireless sensor node is developed, for which the energy scavenging ensures energy autonomy and long-term operability. Thanks to a particular harvesting circuit and opportune algorithms for energy management, this system is able to extract energy from vibrations and store it into capacitors. The embedded accelerometer and a wireless module make this device ideal for Structure Health Monitoring purposes.


2013 ◽  
Vol 347-350 ◽  
pp. 1920-1923
Author(s):  
Yu Jia Sun ◽  
Xiao Ming Wang ◽  
Fang Xiu Jia ◽  
Ji Yan Yu

The characteristics and the design factors of wireless sensor network node are talked in this article. According to the design factors of wireless sensor network, this article will mainly point out the design of wireless sensor nodes based a Cortex-M3 Microcontroller STM32F103RE chip. And the wireless communication module is designed with a CC2430 chip. Our wireless sensor node has good performance in our test.


Author(s):  
Corinna Schmitt ◽  
Georg Carle

Today the researchers want to collect as much data as possible from different locations for monitoring reasons. In this context large-scale wireless sensor networks are becoming an active topic of research (Kahn1999). Because of the different locations and environments in which these sensor networks can be used, specific requirements for the hardware apply. The hardware of the sensor nodes must be robust, provide sufficient storage and communication capabilities, and get along with limited power resources. Sensor nodes such as the Berkeley-Mote Family (Polastre2006, Schmitt2006) are capable of meeting these requirements. These sensor nodes are small and light devices with radio communication and the capability for collecting sensor data. In this chapter the authors review the key elements for sensor networks and give an overview on possible applications in the field of monitoring.


2012 ◽  
Vol 605-607 ◽  
pp. 566-569
Author(s):  
Rong Mao Zheng

In order to layout convenient the wireless sensor node generally used battery for power supply, the node require working up to several months or even years but battery replacement was difficult or impossible. In this paper, research does not affect the function of WSN how to save the node energy consumption, which can work more time in large-scale collection, processing and communication of complex environmental data. Results show that the energy-saving technologies can be to reduce the energy consumption of 55.6%, which can greatly extend the working life of the wireless sensor node battery.


Author(s):  
Zhenhuan Zhu ◽  
S. Olutunde Oyadiji

This paper proposes a structure of energy harvester that is used to scavenge environment energy to power wireless sensor nodes. The ambient energy usually is from sunlight, wind, vibration, and so on. As the size of a sensor node is limited, the energy converted is normally small and has a prodigious random fluctuation. In order to improve the conversion efficiency of energy harvester, the paper proposes a power conversion circuit to collect rapidly paroxysmal energy generated by external environment. The circuit, as a power conditioner, bridges between energy transducers and the load of a wireless sensor node, and the power output of transducers are either AC or DC. The power conditioner implements AC-DC conversion, voltage adjusting and energy storage. A design model is developed to describe the dynamic behavior of the power conditioner under the different excitation from ambient energy sources, and energy conversion efficiency can be evaluated with the model. The proposed system architecture can be applied in the design of solar, wind or stochastic vibration energy harvesters.


2019 ◽  
Vol 16 (9) ◽  
pp. 4034-4043
Author(s):  
Rani Poonam ◽  
Sharma Avinash

Wireless Sensor Network (WSN) is an emerging area in past few decades. Through the integration of low cost sensor nodes with Internet of Things (IoT), lots of applications are common now these days. Each application senses and transmits the fused data to the sink. This wireless data transmission is called routing and is the main governing factor for the span of the sensor network. This paper analyzes and presents different variety of routing techniques based on connectivity structure of the sensors. The type of application for which sensor nodes are used governs selection of a routing technique.


Repositor ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 79
Author(s):  
Rino Nugroho ◽  
Mahar Faiqurahman ◽  
Zamah Sari

Wireless Sensor Network (WSN) is a wireless network consisting of one or more nodes even numbering thousands. The nodes in the wireless sensor network (WSN) consist of sensor nodes and sink nodes. The use of wireless sensors on the network can form a node that can communicate with each other. The communication process generally uses a pull mechanism that precedes the data query process from the node to node sensor that provides sensing data. In some wireless sensor node architecture, this pull mechanism is considered less effective because the node sink must first request data to the sensor node. Alternative, a push message mechanism can be used to transmit sensed data within specified or determined time intervals.In this research is implemented push message mechanism by using restful web service in wireless sensor communications. Test results on the delivery of data by push data transmission obtained to sink nodes alternately in accordance with the order of destination address listed or stored in memory sensor node. And in doing data delivery to be efficient in the absence of data requests at any time.


2018 ◽  
Vol 7 (1) ◽  
pp. 267-280
Author(s):  
Yi Huang ◽  
Clemens Gühmann

Abstract. In this paper, a fourth-order Kalman filter (KF) algorithm is implemented in the wireless sensor node to estimate the temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three separate wireless sensor nodes are used as the data acquisition systems for different input signals. Six Hall sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All of them are processed to root mean square (rms) in ampere and volt. A rotary encoder is mounted for the rotor speed and Pt-1000 is used for the temperature of the coolant air. The processed signals in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is implemented with fixed-point arithmetic in Contiki OS. Time-division multiple access (TDMA) is used to make the wireless transmission more stable. Compared to the floating-point implementation, the fixed-point implementation has the same estimation accuracy at only about one-fifth of the computation time. The temperature estimation system can work under any work condition as long as there are currents through the machine. It can also be rebooted for estimation even when wireless transmission has collapsed or packages are missing.


2011 ◽  
Vol 63-64 ◽  
pp. 978-982 ◽  
Author(s):  
Wen Si Wang ◽  
Ning Ning Wang ◽  
Michael Hayes ◽  
Brendan O'Flynn ◽  
Cian O'Mathuna

Wireless sensor networks are frequently used to monitor temperature and other manufacturing parameters in recent years. However, the limited battery life posts a constraint for large sensor networks. In this work, thermoelectric energy harvester is designed to effectively convert the heat into electrical energy to power the wireless sensor node. Bismuth telluride thermoelectric modules are optimized for low temperature conditions. Charge pump and switching regulator based power management module is designed to efficiently step up the 500mV thermoelectric voltage to 3.0V level for wireless sensor nodes. This design employs electric double-layer capacitor based energy storage with considerations on practical wireless sensor node operation. The implemented energy harvester prototype is proposed for Tyndall wireless sensor system to monitor temperature and relative humidity in manufacturing process. The prototype was tested in various conditions to discover the issues in this practical design. The proposed prototype can expect a 15 years operative lifetime instead of the 3-6 months battery lifetime.


2018 ◽  
Vol 210 ◽  
pp. 03011
Author(s):  
Masahiro Okuri ◽  
Hiroaki Higaki

In wireless sensor networks, data messages containing sensor data achieved by a sensor module in a wireless sensor node is transmitted to a stationary wireless sink node along a wireless multihop transmission route in which wireless sensor nodes themselves forward the data messages. Each intermediate wireless sensor node broadcast data messages in its wireless transmission range to forward them to its next-hop intermediate wireless sensor node. Hence, eavesdropper wireless nodes within the wireless transmission range easily overhear the data messages. In order to interfere with the eavesdropper wireless nodes illegally overhearing the data messages in transmission, wireless sensor nodes whose wireless transmission ranges overlap and their next-hop intermediate wireless sensor nodes are out of the wireless transmission ranges each other forward data messages in transmission concurrently and cause collisions between these two data messages at any possible eavesdropper wireless nodes intentionally. To enhance regions where concurrently forwarded data messages intentionally collide to prevent their overhearing and to realize concurrent forwarding of data messages, this paper designes an algorithm for TDMA transmission slot assignments for more opportunities to interfere the eavesdropper wireless nodes.


Sign in / Sign up

Export Citation Format

Share Document