scholarly journals Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs of Regular Three-dimensional Networks, Part I: Basics

2020 ◽  
Vol 11 (5) ◽  
pp. 1-24
Author(s):  
Anas N. Al-Rabadi

New implementations within concurrent processing using three-dimensional lattice networks via nano carbon-based field emission controlled-switching is introduced in this article. The introduced nano-based three-dimensional networks utilize recent findings in nano-apex field emission to implement the concurrent functionality of lattice networks. The concurrent implementation of ternary Galois functions using nano threedimensional lattice networks is performed by using carbon field-emission switching devices via nano-apex carbon fibers and nanotubes. The presented work in this part of the article presents important basic background and fundamentals with regards to lattice computing and carbon field-emission that will be utilized within the follow-up works in the second and third parts of the article. The introduced nano-based three-dimensional lattice implementations form new and important directions within three-dimensional design in nanotechnologies that require optimal specifications of high regularity, predictable timing, high testability, fault localization, self-repair, minimum size, and minimum power consumption.

2020 ◽  
Vol 11 (6) ◽  
pp. 21-37
Author(s):  
Anas N. Al-Rabadi

Novel layout realizations for congestion-free three-dimensional lattice networks using the corresponding carbon-based field emission controlled switching is introduced in this article. The developed nano-based implementations are performed in three dimensions to perform the required concurrent computations for which two-dimensional implementations are a special case. The introduced realizations for congestion-free concurrent computations utilize the field-emission controlled switching devices that were presented in the first and second parts of the article for the solution of synthesis congestion and by utilizing field-emission from carbon nanotubes and nanotips. Since the concept of symmetry indices has been related to regular logic design, a more general method called Iterative Symmetry Indices Decomposition that produces regular three-dimensional lattice networks via carbon field-emission multiplexing is presented, where one obtains multi-stage decompositions whenever volume-specific layout constraints have to be satisfied. The introduced congestion-free nano-based lattice computations form new and important paths in regular lattice realizations, where applications include low-power IC design for the control of autonomous robots and for signal processing implementations.


Author(s):  
Anas N. Al-Rabadi

Purpose The purpose of this paper is to introduce new implementations for parallel processing applications using bijective systolic networks and the corresponding carbon-based field emission controlled switching. The developed implementations are performed in the reversible domain to perform the required bijective parallel computing, where the implementations for parallel computations that utilize the presented field-emission controlled switching and their corresponding m-ary (many-valued) extensions for the use in nano systolic networks are introduced. The first part of the paper presents important fundamentals with regards to systolic computing and carbon-based field emission that will be utilized in the implementations within the second part of the paper. Design/methodology/approach The introduced systolic systems utilize recent findings in field emission and nano applications to implement the functionality of the basic bijective systolic network. This includes many-valued systolic computing via field emission techniques using carbon-based nanotubes and nanotips. The realization of bijective logic circuits in current and emerging technologies can be very important for various reasons. The reduction of power consumption is a major requirement for the circuit design in future technologies, and thus, the new nano systolic circuits can play an important role in the design of circuits that consume minimal power for future applications such as in low-power signal processing. In addition, the implemented bijective systems can be utilized to implement massive parallel processing and thus obtaining very high processing performance, where the implementation will also utilize the significant size reduction within the nano domain. The extensions of implementations to field emission-based many-valued systolic networks using the introduced bijective nano systolic architectures are also presented. Findings Novel bijective systolic architectures using nano-based field emission implementations are introduced in this paper, and the implementation using the general scheme of many-valued computing is presented. The carbon-based field emission implementation of nano systolic networks is also introduced. This is accomplished using the introduced field emission carbon-based devices, where field emission from carbon nanotubes and nano-apex carbon fibers is utilized. The implementations of the many-valued bijective systolic networks utilizing the introduced nano-based architectures are also presented. Originality/value The introduced bijective systolic implementations form new important directions in the systolic realizations using the newly emerging nano-based technologies. The 2-to-1 multiplexer is a basic building block in “switch logic,” where in switch logic, a logic circuit is realized as a combination of switches rather than a combination of logic gates as in the gate logic, which proves to be less costly in synthesizing multiplexer-based wide variety of modern circuits and systems since nano implementations exist in very compact space where carbon-based devices switch reliably using much less power than silicon-based devices. The introduced implementations for nano systolic computation are new and interesting for the design in future nanotechnologies that require optimal design specifications of minimum power consumption and minimum size layout such as in low-power control of autonomous robots and in the adiabatic low-power very-large-scale-integration circuit design for signal processing applications.


Author(s):  
Anas N. Al-Rabadi

Purpose The purpose of this paper is to introduce new implementations for parallel processing applications using bijective systolic networks and their corresponding carbon-based field emission controlled switching. The developed implementations are performed in the reversible domain to perform the required bijective parallel computing, where the implementations for parallel computations that utilize the presented field-emission controlled switching and their corresponding many-valued (m-ary) extensions for the use in nano systolic networks are introduced. The second part of the paper introduces the implementation of systolic computing using two-to-one controlled switching via carbon-based field emission that were presented in the first part of the paper, and the computational extension to the general case of many-valued (m-ary) systolic networks utilizing many-to-one carbon-based field emission is also introduced. Design/methodology/approach The introduced systolic systems utilize recent findings in field emission and nano applications to implement the functionality of the basic bijective systolic network. This includes many-valued systolic computing via field-emission techniques using carbon-based nanotubes and nanotips. The realization of bijective logic circuits in current and emerging technologies can be very important for various reasons. The reduction of power consumption is a major requirement for the circuit design in future technologies, and thus, the new nano systolic circuits can play an important role in the design of circuits that consume minimal power for future applications such as in low-power signal processing. In addition, the implemented bijective systems can be utilized to implement massive parallel processing and thus obtaining very high processing performance, where the implementation will also utilize the significant size reduction within the nano domain. The extensions of implementations to field emission-based many-valued systolic networks using the introduced bijective nano systolic architectures are also presented. Findings Novel bijective systolic architectures using nano-based field emission implementations are introduced in this paper, and the implementation using the general scheme of many-valued computing is presented. The carbon-based field emission implementation of nano systolic networks is also introduced. This is accomplished using the introduced field-emission carbon-based devices, where field emission from carbon nanotubes and nano-apex carbon fibers is utilized. The implementations of the many-valued bijective systolic networks utilizing the introduced nano-based architectures are also presented. Practical implications The introduced bijective systolic implementations form new important directions in the systolic realizations using the newly emerging nano-based technologies. The 2-to-1 multiplexer is a basic building block in “switch logic,” where in switch logic, a logic circuit is realized as a combination of switches rather than a combination of logic gates as in the gate logic, which proves to be less costly in synthesizing multiplexer-based wide variety of modern circuits and systems since nano implementations exist in very compact space where carbon-based devices switch reliably using much less power than silicon-based devices. The introduced implementations for nano systolic computation are new and interesting for the design in future nanotechnologies that require optimal design specifications of minimum power consumption and minimum size layout such as in low-power control of autonomous robots and in the adiabatic low-power VLSI circuit design for signal processing applications. Originality/value The introduced bijective systolic implementations form new important directions in the systolic realizations utilizing the newly emerging nanotechnologies. The introduced implementations for nano systolic computation are new and interesting for the design in future nanotechnologies that require optimal design specifications of high performance, minimum power and minimum size.


2020 ◽  
Vol 11 (6) ◽  
pp. 1-19
Author(s):  
Anas N. Al-Rabadi

Novel realizations of concurrent computations utilizing three-dimensional lattice networks and their corresponding carbon-based field emission controlled switching is introduced in this article. The formalistic ternary nano-based implementation utilizes recent findings in field emission and nano applications which include carbon-based nanotubes and nanotips for three-valued lattice computing via field-emission methods. The presented work implements multi-valued Galois functions by utilizing concurrent nano-based lattice systems, which use two-to-one controlled switching via carbon-based field emission devices by using nano-apex carbon fibers and carbon nanotubes that were presented in the first part of the article. The introduced computational extension utilizing many-to-one carbon field-emission devices will be further utilized in implementing congestion-free architectures within the third part of the article. The emerging nano-based technologies form important directions in low-power compact-size regular lattice realizations, in which carbon-based devices switch less-costly and more-reliably using much less power than silicon-based devices. Applications include low-power design of VLSI circuits for signal processing and control of autonomous robots.


2019 ◽  
Vol 1 (2) ◽  
pp. V3
Author(s):  
Guilherme H. W. Ceccato ◽  
Rodolfo F. M. da Rocha ◽  
Duarte N. C. Cândido ◽  
Wladimir O. Melo ◽  
Marcio S. Rassi ◽  
...  

Foramen magnum (FM) meningiomas are challenging lesions. We present the case of a 38-year-old female with neck pain, dysphonia, and slight twelfth nerve palsy. Imaging workup was highly suggestive of an FM meningioma, and microsurgical resection with the aid of intraoperative neurophysiological monitoring was indicated. A transcondylar approach was employed, the vertebral artery was mobilized, and the tumor was completely removed. Postoperative MRI demonstrated complete resection. There were no signs of cervical instability. The patient presented with improvement of her symptoms and no new neurological deficit on follow-up. FM meningiomas can be successfully resected using a transcondylar approach, since it increases the exposure of the ventral FM, allowing the surgeon to work parallel to the skull base and flush with the tumor’s attachment. Informed consent was obtained from the patient for publication of this operative video.The video can be found here: https://youtu.be/itfUOB-6zM0.


2020 ◽  
Author(s):  
Hongfeng Sheng ◽  
Weixing Xu ◽  
Bin Xu ◽  
Hongpu Song ◽  
Di Lu ◽  
...  

UNSTRUCTURED The retrospective study of Taylor's three-dimensional external fixator for the treatment of tibiofibular fractures provides a theoretical basis for the application of this technology. The paper collected 28 patients with tibiofibular fractures from the Department of Orthopaedics in our hospital from March 2015 to June 2018. After the treatment, the follow-up evaluation of Taylor's three-dimensional external fixator for the treatment of tibiofibular fractures and concurrency the incidence of the disease, as well as the efficacy and occurrence of the internal fixation of the treatment of tibial fractures in our hospital. The results showed that Taylor's three-dimensional external fixator was superior to orthopaedics in the treatment of tibiofibular fractures in terms of efficacy and complications. To this end, the thesis research can be concluded as follows: Taylor three-dimensional external fixation in the treatment of tibiofibular fractures is more effective, and the incidence of occurrence is low, is a new technology for the treatment of tibiofibular fractures, it is worthy of clinical promotion.


Neurosurgery ◽  
2004 ◽  
Vol 55 (3) ◽  
pp. 519-531 ◽  
Author(s):  
Erol Veznedaroglu ◽  
David W. Andrews ◽  
Ronald P. Benitez ◽  
M. Beverly Downes ◽  
Maria Werner-Wasik ◽  
...  

Abstract OBJECTIVE: Despite the success of stereotactic radiosurgery, large inoperable arteriovenous malformations (AVMs) of 14 cm3 or more have remained largely refractory to stereotactic radiosurgery, with much lower obliteration rates. We review treatment of large AVMs either previously untreated or partially obliterated by embolization with fractionated stereotactic radiotherapy (FSR) regimens using a dedicated linear accelerator (LINAC). METHODS: Before treatment, all patients were discussed at a multidisciplinary radiosurgery board and found to be suitable for FSR. All patients were evaluated for pre-embolization. Those who had feeding pedicles amenable to glue embolization were treated. LINAC technique involved acquisition of a stereotactic angiogram in a relocatable frame that was also used for head localization during treatment. The FSR technique involved the use of six 7-Gy fractions delivered on alternate days over a 2-week period, and this was subsequently dropped to 5-Gy fractions after late complications in one of seven patients treated with 7-Gy fractions. Treatments were based exclusively on digitized biplanar stereotactic angiographic data. We used a Varian 600SR LINAC (Varian Medical Systems, Inc., Palo Alto, CA) and XKnife treatment planning software (Radionics, Inc., Burlington, MA). In most cases, one isocenter was used, and conformality was established by non-coplanar arc beam shaping and differential beam weighting. RESULTS: Thirty patients with large AVMs were treated between January 1995 and August 1998. Seven patients were treated with 42-Gy/7-Gy fractions, with one patient lost to follow-up and the remaining six with previous partial embolization. Twenty-three patients were treated with 30-Gy/5-Gy fractions, with two patients lost to follow-up and three who died as a result of unrelated causes. Of 18 evaluable patients, 8 had previous partial embolization. Mean AVM volumes at FSR treatment were 23.8 and 14.5 cm3, respectively, for the 42-Gy/7-Gy fraction and 30-Gy/5-Gy fraction groups. After embolization, 18 patients still had AVM niduses of 14 cm3 or more: 6 in the 7-Gy cohort and 12 in the 5-Gy cohort. For patients with at least 5-year follow-up, angiographically documented AVM obliteration rates were 83% for the 42-Gy/7-Gy fraction group, with a mean latency of 108 weeks (5 of 6 evaluable patients), and 22% for the 30-Gy/5-Gy fraction group, with an average latency of 191 weeks (4 of 18 evaluable patients) (P = 0.018). For AVMs that remained at 14 cm3 or more after embolization (5 of 6 patients), the obliteration rate remained 80% (4 of 5 patients) for the 7-Gy cohort and dropped to 9% for the 5-Gy cohort. A cumulative hazard plot revealed a 7.2-fold greater likelihood of obliteration with the 42-Gy/7-Gy fraction protocol (P = 0.0001), which increased to a 17-fold greater likelihood for postembolization AVMs of 14 cm3 or more (P = 0.003). CONCLUSION: FSR achieves obliteration for AVMs at a threshold dose, including large residual niduses after embolization. With significant treatment-related morbidities, further investigation warrants a need for better three-dimensional target definition with higher dose conformality.


2021 ◽  
pp. 159101992110147
Author(s):  
Oktay Algin ◽  
Gokhan Yuce ◽  
Ural Koc ◽  
Gıyas Ayberk

Purpose There is no study on the role of three-dimensional compressed sensing time of flight MR angiography (3D-CS-TOF) in the management of the WEB device. We evaluated the efficacy of 3-tesla 3D-CS-TOF for the management and follow-up of the WEB device implantations. Materials and methods Seventy-three aneurysms of 69 patients treated with the WEB device were retrospectively examined. Morphological parameters and embolization results of the aneurysms were assessed and compared on 3D-CS-TOF, CTA, and DSA images. Results Occluded, neck remnant, and recurrent aneurysms were observed in 61 (83.6%), 7 (9.6%), and 5 (6.8%) aneurysms, respectively. Inter- and intra-reader agreement values related to aneurysm size measurements were perfect. Aneurysms size, age, and proximal vessel tortuosity were negatively correlated with the visibility of the aneurysms and parent vessels on 3D-CS-TOF images (p = 0.043; p = 0.032; p < 0.001, respectively). Subarachnoid hemorrhage and age are associated with 3D-CS-TOF artifacts (p = 0.031; p = 0.005, respectively). 3D-CS-TOF findings are in perfect agreement with DSA or CT angiography (CTA) results (p < 0.001). Conclusion According to our results, 3D-CS-TOF can be an easy, fast, and reliable alternative for the management or follow-up of WEB assisted embolization.


Author(s):  
Tran Anh Quynh ◽  
Pham Duy Hien ◽  
Le Quang Du ◽  
Le Hoang Long ◽  
Nguyen Thi Ngoc Tran ◽  
...  

AbstractRobotic surgery offers three-dimensional visualization and precision of movement that could be of great value to gastrointestinal surgeons. There were many previous reports on robotic technology in performing Soave colonic resection and pull-through for Hirschsprung’s disease in children. This study described the follow-up of the Robotic-assisted Soave procedure for Hirschsprung’s disease in children. Robotic-assisted endorectal pull-through was performed using three robotic arms and an additional 5-mm trocar. The ganglionic and aganglionic segments were initially identified by seromuscular biopsies. The rest of the procedure was carried out according to the Soave procedure. We left a short rectal seromuscular sleeve of 1.5–2 cm above the dentate line. From December 2014 to December 2017, 55 pediatric patients were operated on. Age ranged from 6 months to 10 years old (median = 24.5 months). The aganglionic segment was located in the rectum (n = 38), the sigmoid colon (n = 13), and the left colon (n = 4). The mean total operative time was 93.2 ± 35 min (ranging from 80 to 180 min). Minimal blood was lost during the surgery. During the follow-up period, 41 patients (74.6%) had 1–2 defecations per day, 12 patients (21.8%) had 3–4 defecations per day, and 2 patients (3.6%) had more than 4 defecations per day. Fecal incontinence, enterocolitis, and mild soiling occurred in three (5.4%), four (7.3%), and two pediatric patients, respectively. Robotic-assisted Soave procedure for Hirschsprung’s disease in children is a safe and effective technique. However, a skilled robotic surgical team and procedural modifications are needed.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


Sign in / Sign up

Export Citation Format

Share Document