scholarly journals Isolation and Characterization of Cellulase Producing Bacteria for the Purpose of Converting Spent Mushroom Edible Canna-Waste into Organic Fertilizer  

Converting spent mushroom substrates into organic fertilizer helps to tackle the problem of pollution in edible canna starch processing villages and adds new value to the production chain of edible canna. To successfully turn the spent substrates into compost, there is certainly an indispensable role for cellulolytic microorganisms, in which Bacillus strains are always important. Several bacterial strains have been isolated from spent edible canna substrate after cultivation of monkey head mushroom in this study. Among isolated strains, the strain NDK5 has been selected exhibiting the highest cellulolytic activities with solubilization indexes of 6.14 and 18.3 mm for the ratio between the halo zone diameters and the colony diameters in the point cultivation method (SIratio) and the offset between the halo zone diameters and the agar hole diameters (SIoffset), respectively. The highest CMCase activity was 4.29 ± 0.071 U/ml. Morphological, physiological, biochemical, and 16S rRNA sequence analyses (100% homology with B. amyloliquefaciens sp. plantarum FZB42) were further carried out for the selected strain, leading to the identification of the strain as B. amyloliquefaciens sp. plantarum NDK5 strain. In addition, NDK5 was proved to have a capacity for synthesizing indole-3-acetic acid, a plant growth hormone, on an L-tryptophan-containing medium. Trial incubation of spent mushroom edible canna-substrate with the strain NDK5 showed increases in several quality criteria of the waste after 20 days of incubation, that meet the standard criteria for bio-organic fertilizer according to TCVN 7185:2002.

2015 ◽  
Vol 77 (31) ◽  
Author(s):  
Suganthi Thevarajoo ◽  
Chitra Selvaratnam ◽  
Kian Mau Goh ◽  
Fazilah Abd. Manan ◽  
Zaharah Ibrahim ◽  
...  

Marine environment remained as largely unexplored source for researchers to discover marine microorganisms with novel properties. This study aims to isolate marine bacteria from the seashore of Desaru, Malaysia. Totally, six bacterial strains were successfully obtained and were identified by complete 16S rRNA sequencing. The characterizations of bacterial strains were performed based on morphological tests, Gram-staining, biochemical tests, and antibiotic sensitivity. The 16S rRNA sequence of D-2, D-4, D-7, D-15, D-31, and D-33 revealed a high identity of 97 to 99% with taxa belong to genera of Pseudomonas, Marinomonas, Exiquobacterium, Micrococcus, Pseudoalteromonas, and Shewanella respectively. Strain D-31 exhibited higher tolerance towards antibiotics kanamycin, ampicillin, and erythromycin while the growth of other strains were retarded by at least two of these antibiotics. We further characterized strain D-4 and D-31 that belonged to Marinomonas sp. and Pseudoalteromonas sp.. Both genera are interesting as earlier researchers have discovered new antibacterial substances, industrial enzymes and unique secondary metabolites.


2020 ◽  
Author(s):  
Rabia Saleem ◽  
Safia Ahmed

AbstractBeing a significant protein L-glutaminases discovers potential applications in various divisions running from nourishment industry to restorative and cure. It is generally disseminated in microbes, actinomycetes, yeast and organisms. Glutaminase is the principal enzyme that changes glutamine to glutamate. The samples were gathered from soil of Taxila, Wah Cantt and Quetta, Pakistan for the isolation of glutaminase producing bacteria. After primary screening, subordinate screening was done which includes multiple testification such as purification, observation of morphological characters and biochemical testing of bacterial strains along with 16S rRNA sequence homology testing. Five bacterial strains were selected showing glutaminase positive test in screening, enzyme production via fermentation and enzymatic and protein assays. Taxonomical characterization of the isolates identified them as Bacillus subtilis U1, Achromobacter xylosoxidans G1, Bacillus subtilis Q2, Stenotrophomonas maltophilia U3 and Alcaligenes faecalis S3. The optimization of different effectors such as incubation time, inducers, carbon source, pH, and nitrogen source were also put under consideration. There was slight difference among incubation of bacterial culture, overall, 36 hours of incubation time was the best for glutaminase production by all the strains. Optimal pH was around 9 in Achromobacter xylosoxidans G1 and Alcaligenes faecalis S3, pH 6 in Bacillus subtilis U1, pH 8 in Stenotrophomonas maltophilia U3, pH 6-8 in Bacillus subtilis Q2. Best glutaminase production was obtained at 37°C by Bacillus subtilis U1and Bacillus subtilis Q2, 30°C for Achromobacter xylosoxidans G1, Stenotrophomonas maltophilia U3 and 25°C by Alcaligenes faecalis S3. The carbon sources put fluctuated effects on activity of enzyme in such a way that glucose was the best carbon source for Bacillus subtilis U1and Bacillus subtilis Q2, Sorbitol for Achromobacter xylosoxidans G1 and Alcaligenes faecalis S3 while xylose was the best for Stenotrophomonas maltophilia U3. Yeast extract and Trypton were among good nitrogen sources for Achromobacter xylosoxidans G1 and of Bacillus subtilis U1 respectively. Glutamine was the best inducer for Bacillus subtilis Q2, Alcaligenes faecalis S3 and Stenotrophomonas maltophilia U3, while lysine for Achromobacter xylosoxidans G1 and glycine act as good inducer in case of Bacillus subtilis U1. After implementation of optimal conditions microbial L-glutaminase production can be achieved and the bacterial isolates have a great potential for production of glutaminase enzyme and their applications.


2002 ◽  
Vol 68 (9) ◽  
pp. 4390-4398 ◽  
Author(s):  
S. A. F. T. van Hijum ◽  
G. H. van Geel-Schutten ◽  
H. Rahaoui ◽  
M. J. E. C. van der Maarel ◽  
L. Dijkhuizen

ABSTRACT Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.


2021 ◽  
Vol 16 (8) ◽  
pp. 110-117
Author(s):  
Kannan Abhirami ◽  
K. Jayakumar

Phosphorous is considered as a major parameter for crop yield. Its availability to plant is independent of its abundance. For the plants to utilize phosphorous, it is to be converted to absorbable form. Here, the part rendered by phosphate solubilizing bacteria is significant for it plays a crucial role in the formation of plant usable phosphate from organic forms. In the present work, an effort had been made to isolate and identify phosphate solubilising bacterial isolate from the rhizhospheric soils of various plants in Ponthenpuzha forest. One of the isolate from Cymbopogon citrates responded positively to Pikovskaya’s medium by producing a halo zone during in vitro culture. Colony features and 16S rRNA sequence analysis identified the isolate as Burkholderia sps. We have reported the presence of genus Burkholderia in the rhizospheric zone of Cymbopogon citratus. Further studies are warranted for species level identification of the isolate.


2013 ◽  
Vol 33 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Cintia Anabela Mazzucotelli ◽  
Alejandra Graciela Ponce ◽  
Catalina Elena Kotlar ◽  
María del Rosario Moreira

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1684 ◽  
Author(s):  
Larissa Celiberto ◽  
Roseli Pinto ◽  
Elizeu Rossi ◽  
Bruce Vallance ◽  
Daniela Cavallini

Modulation of the gut microbiota through the use of probiotics has been widely used to treat or prevent several intestinal diseases. However, inconsistent results have compromised the efficacy of this approach, especially in severe conditions such as inflammatory bowel disease (IBD). The purpose of our study was to develop a personalized probiotic strategy and assess its efficacy in a murine model of intestinal inflammation. Commensal bacterial strains were isolated from the feces of healthy mice and then administered back to the host as a personalized treatment in dextran sodium sulfate (DSS)-induced colitis. Colonic tissues were collected for histological analysis and to investigate inflammatory markers such as Il-1β, Il-6, TGF-β, and Il-10, and the enzyme myeloperoxidase as a neutrophil marker. The group that received the personalized probiotic showed reduced susceptibility to DSS-colitis as compared to a commercial probiotic. This protection was characterized by a lower disease activity index and reduced histopathological damage in the colon. Moreover, the personalized probiotic was more effective in modulating the host immune response, leading to decreased Il-1β and Il-6 and increased TGF-β and Il-10 expression. In conclusion, our study suggests that personalized probiotics may possess an advantage over commercial probiotics in treating dysbiotic-related conditions, possibly because they are derived directly from the host’s own microbiota.


2018 ◽  
Vol 6 (2) ◽  
pp. 500-508
Author(s):  
Julie Ann A. Arcales ◽  
Garner Algo L.Alolod

Isolation and characterization of bacteria in food products are important to determine and distinguish the beneficial or harmful effects of microbiota in certain samples. Lactic acid bacteria in food products had long been associated to good factors as food preservatives and with added fermentation metabolites. This study isolated and characterized lactic acid bacteria from burong bangus. The culture and purification process of bacteria isolation resulted to 4 strains of lactic acid bacteria namely Enterococcus faecalis, Tetragenococcus muriaticus, Lactobacillus delbrueckii subp. delbrueckii and Carnobacterium divergens. High enzymatic activity were observed with E. faecalis particularly on lipase and protease assay. While C. divergens have no enzymatic activity against lipase, protease, amylase and cellulase. The antimicrobial property of L. delbrueckii is only susceptible to amoxicillin unlike the other three bacteria isolates. No antagonistic activity were observed with the four bacterial strains against Bacillus subtilis, Staphylococcus aureus and Escherichia coli. The result of this study showed promising benefits to the industry especially in developing countries like the Philippines because population are not yet so aware of this organisms and the benefits that can be derived through their consumption.


1970 ◽  
Vol 17 ◽  
pp. 71-76
Author(s):  
M Fakruddin ◽  
Reaz Mohammad Mazumder ◽  
Towhida Khanom Tania ◽  
Saiful Islam ◽  
Meher Nigad Nipa ◽  
...  

Context: Waste water containing Chromium (Cr6+) is by far the most important environmental challenge being faced. Objectives: The present study was planned on the isolation and characterization of chromate resistant and reducing bacterial strains in order to use them for detoxification of chromate.Materials and Methods: Water samples were collected to isolate microorganisms from tannery effluent of Baluchara, Chittagong and inoculated into Luria-Bertani medium with added Cr6+ as K2Cr2O7. The organisms have been identified and studied for Cr6+ reduction-ability in growth dependent manner.Results: A total of 35 isolates have been selected as potential organism belonging to the species of Moraxella (14.3%), Bacillus (11.43%), Streptococcus (25.72%), Staphylococcus (5.7%), Salmonella (12.3%), E. coli (13.3%), Enterobacter (11.3%), Hafnia alvei (2.45%) and Alcaligenes (3.5%). The selected isolates were able to tolerate at least 500 mg/l of Cr6+. The total Cr6+ concentration of the effluent sample analysed was found to be about 23.73 mg/l as determined by Atomic Absorption Spectrophotometry. Two of the isolates reduced 38% and 32% of Cr6+ added to the medium. Another 7 isolates showed Cr6+; reducing capability ranging from 18 to 22%.Conclusion: As the isolates have turned out to successfully reduce Cr6+ in this study, these can be used for the development of bioremediation process. Key words: Enzymatic reduction; Bioremediation; Chromium; Ecotoxicity; Tannery.DOI: 10.3329/jbs.v17i0.7104J. bio-sci. 17: 71-76, 2009


Sign in / Sign up

Export Citation Format

Share Document