scholarly journals Effect of lead in the aerobic decomposition of Myriophyllum aquaticum (Vellozo) Verdecourt

2020 ◽  
Vol 15 ◽  
pp. 43-49
Author(s):  
B.S. Soares ◽  
I Bianchini Junior ◽  
M.B. Cunha-Santino

Lead is a toxic element that has been used since early times and is still employed today in several industrial processes. Events as the collapse of the Fundão dam in Bento Rodrigues, district of Mariana (MG) on November 2015, significantly increase concentrations of metals above-recommended levels, including lead. In this context, this study aims to evaluate the impact of lead in the cycling rate of organic matter in the aquatic environment. Thus, the rates of aerobic decomposition of Myriophyllum aquaticum (Vell.) Verdec at different concentrations of lead (5.0, 10.0, 20.0 and 30.0 mg L-1) were measured, analyzing the dissolved oxygen consumption. Decomposition chambers filled with samples of water and M. aquaticum were incubated at 20° C in the dark for 80 days and periodically had the oxygen concentrations determined by polarography, when the concentrations were less than 2 mg L-1, the incubations were re-aerated. At the lowest concentrations (5.0 and 10.0 mg L-1) of lead the mineralization was lower, however, the reaction coefficients and the amount of oxygen consumed were equivalent to the control. At the highest concentrations (20.0 and 30.0 mg L-1) the mineralization was increased, with the reduction of reaction coefficients and higher oxygen consumption.

1995 ◽  
Vol 31 (10) ◽  
pp. 73-84 ◽  
Author(s):  
T. M. Iversen

The main environmental problems associated with fish farming in Denmark are attributable to the dam, the “dead reach” and nutrient and organic matter discharge. The environmental regulation of fish farming in Denmark started with the Environmental Protection Act of 1974, the Statutory Order of 1985 forbidding wet feed, and the Action Plan on the Aquatic Environment of 1987. In the case of freshwater fish farms, the latter was implemented through the measures stipulated in the 1989 Statutory Order on Fish Farms. The impact of Danish legislative measures to reduce and regulate the environmental effects of freshwater fish farms can be summarized as follows: - the number of fish farms has been reduced from about 800 in 1974 to about 500 at present; - production has tripled since 1974 and has been stable since 1989; - a change from wet to dry feed has reduced the environmental impact of the farms; - the national goals of the Action Plan on the Aquatic Environment of 1987 for reducing fish farm discharges of organic matter, nitrogen and phosphorus have been fulfilled. The main remaining problems are that: - the local impact of fish farms on downstream stream quality is still much too high in about 15% of cases; - the problem of the passage of migrating invertebrates and fish is still unsolved at some farms; - the problems posed by “dead reaches” are still unsolved. It is concluded that sustainable fish farming is possible in Denmark, but with the present technology production will have to be significantly reduced.


2008 ◽  
Vol 57 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Kyung-Nan Min ◽  
Sarina J. Ergas ◽  
Anna Mermelstein

This study investigated the impact of dissolved oxygen (DO) concentration on membrane filtering resistance, soluble organic matter (SOM) and extracellular polymeric substance (EPS) characteristics in a membrane bioreactor (MBR). A laboratory-scale MBR was operated under DO limited (0.2 mg L−1 DO) and fully aerobic (3.7 and 5.4 mg L−1 DO) conditions. Membrane filtering resistance was determined for the mixed liquor suspended solids (MLSS) and for resuspended microbial biomass after removing SOM. Regardless of the DO concentration, the cake resistance (Rc) was approximately 95 percent of the total resistance (Rt). The membrane cake resistance was found to decrease significantly after removing the SOM. The total resistance caused by the resuspended biomass was 29 percent of that caused by the MLSS under DO limited conditions, while the total resistance caused by resuspended biomass was 41 to 48 percent of that caused by the MLSS under fully aerobic conditions. Under DO limited conditions, SOM in the MLSS contained a larger amount of high molecular weight compounds, leading to higher cake resistance than under fully aerobic conditions. There was significant variation in the molecular weight fractions of the EPS, with no clear relationship with DO concentration. There was also no distinct relationship between membrane filtering resistance and molecular weight fraction of the EPS.


2006 ◽  
Vol 4 (4) ◽  
pp. 435-440 ◽  
Author(s):  
Felipe Link de Rosso ◽  
Keidi C. S. Bolner ◽  
Bernardo Baldisserotto

Low dissolved oxygen levels in the water (hypoxia) can be provoked by oxygen consumption by fish and other organisms, organic matter decomposition, phytoplankton blooms, and temperature increase. The objective of the present study was to investigate Na+, Cl-, K+, and ammonia fluxes in silver catfish (Rhamdia quelen) exposed to different dissolved oxygen levels. Juveniles (9 ± 1g) maintained at 6.0 mg.L-1 dissolved oxygen were transferred to four 40 L aquaria with different dissolved oxygen levels (in mg.L-1): 6.0, 4.5, 3.5, and 2.5. In another series of experiments, juveniles were acclimated at 6.0 or 2.5 mg.L-1 dissolved oxygen levels, and then placed in two 40 L aquaria with 6.0 mg.L-1 dissolved oxygen. For both series of experiments, 1, 24, 48 or 120 h after transference juveniles were placed in individual chambers of 200 mL (with the same dissolved oxygen levels of their respective aquaria) for 3 h. Water samples were collected for analysis of Na+, Cl-, K+, and ammonia levels. The obtained results allow concluding that exposure to 2.5 mg.L-1 dissolved oxygen levels promotes loss of ions and lower ammonia excretion in silver catfish juveniles, but these losses are rapidly stabilized for Na+ and Cl-. Exposure to less hypoxic levels also changes ion fluxes and ammonia excretion, but there is no clear relationship between both parameters in this species. Therefore, silver catfish osmoregulation seems to be affected when this species is transferred from normoxic to hypoxic waters and vice-versa.


2021 ◽  
pp. 72-86
Author(s):  
Yu. Krot ◽  
◽  
D. Medovnyk ◽  
Yu. Krasiuk ◽  
D. Kudriavtseva ◽  
...  

Purpose. To study the peculiarities of relationships between the aquatic environment and the extruded feed residues in the circulating aquaculture systems intended for growing Clarias gariepinus, and changes in the concentrations of inorganic nitrogen compounds and phosphorus phosphates. Methodology. The object of study is the quality of the aquatic environment when modeling the food load in accordance with feeding standards of different age groups of Cl. gariepinus. Water quality in experimental tanks was determined by analytical methods. Findings. It was found that the intake of extruded feed residues into the aquatic environment leads to a deterioration in its quality due to an increase in the concentration of compounds of inorganic nitrogen and phosphorus of phosphates, which negatively affects the vital activity of Cl. gariepinus. Nitrification processes are activated under conditions of sufficient dissolved oxygen content in the environment. The overload of the aquatic environment with organic matter promotes the bacterial transformation processes of nitrogen and phosphorus compounds, which are characterized by the predominance of the ammonification process and the suppression of oxidative processes. Upon completion of the mineralization of the excess organic matter, the appearance of a sufficient amount of dissolved oxygen activates ammonium oxidation and intensifies nitrification process. The leading factors in the ammonification and nitrification processes in an environment saturated with organic matter include the dissolved oxygen content, which regulates the activity ratio of anaerobic amonifying and aerobic nitrifying microflora. Optimum aeration in Cl. gariepinus cultivation systems is determined not only by the direct physiological needs of fish, but also by the need to maintain a sufficient content of dissolved oxygen to ensure nitrification processes. Originality. The study investigated the effect of the food load on the quality of aquatic environment in the circulating aquaculture systems for Cl. gariepinus rearing. Practical value. The study results can be used to optimize Cl. gariepinus growing methods in circulating aquaculture systems with adjustable parameters at high stocking densities. Key words: African catfish, quality of the aquatic environment, food load, inorganic nitrogen compounds, phosphorus phosphate content, circulating adjustable systems.


1999 ◽  
Vol 39 (2) ◽  
pp. 233-249 ◽  
Author(s):  
Jes Vollertsen ◽  
Thorkild Hvitved-Jacobsen ◽  
Iain McGregor ◽  
Richard Ashley

Organic matter in sediments from pipes and silt traps in combined sewers was divided into fractions with different settling velocities. Biodegradability of organic matter for these fractions was characterised based on results from a conceptual model of aerobic transformations of resuspended sediments calibrated on oxygen utilisation rates. Pipe sediments as well as silt trap sediments were investigated and no differences between these deposits were detected. It was found that the largest fraction of organic matter is associated with material which settles relatively fast and only a small part is associated with relatively slow settling material. However, the fast settling organic matter was found to be rather slowly biodegradable compared to the slow settling organic fraction. Because the biodegradability of the organic matter discharged during combined sewer overflow (CSO) events is of significant importance to the impact on the dissolved oxygen concentrations in receiving waters, the biodegradability of sewer sediments is argued to be taken into account for detailed characterisation when dealing with CSO impacts.


2011 ◽  
Vol 23 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Renato Henriques da Silva ◽  
Rafael Spadaccia Panhota ◽  
Irineu Bianchini Junior

AIM: This study aimed at describing and discussing the leachates mineralization (aerobic and anaerobic) of two species of aquatic macrophytes (Salvinia molesta and Myriophyllum aquaticum) from a tropical reservoir (22° 00' S and 47° 54' W); METHODS: The incubations were prepared with plant leachates and reservoir water sample and were maintained during 45 days in the dark (at 20 °C). The organic carbon and the oxygen consumption kinetics were evaluated; RESULTS: Irrespective of to the experimental condition, the leachates were mainly utilized for catabolic processes (i.e., respiration), mineralization was slightly faster in an aerobic environment (1.22 fold) and in this condition, the yield of refractory products was smaller (2.3%); the O/C stoichiometric ratios values (oxygen consumed per atom of carbon) from mineralization of the 2 types of leachates were similar (ca. 1.12); CONCLUSIONS: According to these results we conclude that the leachate from selected macrophytes is rapidly decomposed and subsidize primariy the microbial catabolism (aerobic or anaerobic); in addition, we propose that S. molesta contributes more to the input of dissolved organic matter within the reservoir.


Author(s):  
Nihar R. Samal ◽  
Pankaj K. Roy ◽  
Malabika B. Roy ◽  
Asis Mazumdar Mazumdar

A minimum value in the Dissolved Oxygen distribution of two shallow lakes namely, Rabindra Sarobar in south Kolkata and Subhas Sarobar in East Kolkata in the Gangetic Delta plain, has been observed to develop in the Hypolimnion during the stratified period. This minimum is usually explained by the accumulation of organic matter from the overlying layer of water. The introduction of organic matter from allochthonous and autochthonous sources is also a likely contributor to the accelerated oxygen depletion within Hypolimnion. The thermal stratification, in general, which occurs in these tropical lakes, is of direct relevance in maintaining the water quality standards, particularly for higher aquatic life. The present article attempts to investigate the possible depletion of hypolimnetic oxygen depletion as a result of the impact of thermal stratification.  These investigations will be the basic guidelines for the fishermen and their livelihoods potentially depend upon the different varieties of fishing on daily basis. The massive summer fish kills in these lakes is a major devastating happenings that is reported by the fishermen and also it is well evident from our experimental observations.  The comparison of the biodiversity of these two lakes is attempted in the present investigation. Key Words: Thermal stratification, Dissolved Oxygen, Tropical Shallow Lake, Hypolimnion, biodiversity


2021 ◽  
Vol 9 ◽  
Author(s):  
Ming Zhong ◽  
Shanxia Liu ◽  
Kun Li ◽  
Huabo Jiang ◽  
Tao Jiang ◽  
...  

Dissolved oxygen (DO) concentration is an essential indicator for assessment of river ecosystems. A hydrodynamic and water quality mathematical model coupling one-dimensional and two-dimensional models is developed in this study. The characteristics of study area, flow velocity, temperature, and organic contamination are taken as consideration in the scenario setting. The changing processes of DO concentration are simulated in different scenarios, and the effects on DO concentration are discussed. Results indicate that: 1) A negative relation was present between DO concentration in Yongjiang River and releasing discharge of the Laokou hydro-project, since reoxygenation is greater than oxygen consumption along the river, DO concentration increases from upstream to downstream. 2) DO concentration increases with the releasing of DO in the water, which also varies along with the releasing of biochemical oxygen demand (BOD) concentration. Laokou exhibits the greatest increase of BOD, which ranges from 0.1 mg/L to 0.75 mg/L 3) The increasing of water temperature results in increased reoxygenation and a decrease in oxygen consumption. Our study shows that the water temperature increased from 19°C to 29 °C, and correspondingly saturated DO decreased from 9.25 mg/L to 7.54 mg/L. The study provides scientific support for ecology operation in the cascade river, and is expected to improve the water environment by reservoir regulation.


2021 ◽  
Vol 16 (4) ◽  
pp. 675-682
Author(s):  
Carlos Matovelle

Using models of organic matter degradation and dissolved oxygen consumption, the concentrations of these compounds are analyzed in two stretches of a river after a discharge of raw sewage. The analyzed river has low drafts and widths, so the velocity is high and the aeration coefficient kr calculated with the Covar method is high, this indicates a rapid recovery of oxygen from the water consumed by the organic matter degradation processes, the river has been instrumented to measure flows and organic matter at various points to calibrate the model. The hydraulic parameters of the river section are analyzed in three control points, in each one sample are taken to analyze oxygen consumption by organic matter and nitrification through laboratory tests to determine and adjust the kinetics of the processes (kd; knit). This kinetics have been used in the development of a water quality model to verify its adjustment, obtaining higher RMSE results than with kinetics from secondary sources. It is observed that the river has an excellent capacity for self-purification due to the high income of dissolved oxygen, with a kr > 9 d-1.


2018 ◽  
Author(s):  
Hossam H Tayeb ◽  
Marina Stienecker ◽  
Anton Middelberg ◽  
Frank Sainsbury

Biosurfactants, are surface active molecules that can be produced by renewable, industrially scalable biologic processes. DAMP4, a designer biosurfactant, enables the modification of interfaces via genetic or chemical fusion to functional moieties. However, bioconjugation of addressable amines introduces heterogeneity that limits the precision of functionalization as well as the resolution of interfacial characterization. Here we designed DAMP4 variants with cysteine point mutations to allow for site-specific bioconjugation. The DAMP4 variants were shown to retain the structural stability and interfacial activity characteristic of the parent molecule, while permitting efficient and specific conjugation of polyethylene glycol (PEG). PEGylation results in a considerable reduction on the interfacial activity of both single and double mutants. Comparison of conjugates with one or two conjugation sites shows that both the number of conjugates as well as the mass of conjugated material impacts the interfacial activity of DAMP4. As a result, the ability of DAMP4 variants with multiple PEG conjugates to impart colloidal stability on peptide-stabilized emulsions is reduced. We suggest that this is due to constraints on the structure of amphiphilic helices at the interface. Specific and efficient bioconjugation permits the exploration and investigation of the interfacial properties of designer protein biosurfactants with molecular precision. Our findings should therefore inform the design and modification of biosurfactants for their increasing use in industrial processes, and nutritional and pharmaceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document